首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
3.
4.
GW182 family proteins are essential in animal cells for microRNA (miRNA)-mediated gene silencing, yet the molecular mechanism that allows GW182 to promote translational repression and mRNA decay remains largely unknown. Previous studies showed that while the GW182 N-terminal domain interacts with Argonaute proteins, translational repression and degradation of miRNA targets are promoted by a bipartite silencing domain comprising the GW182 middle and C-terminal regions. Here we show that the GW182 C-terminal region is required for GW182 to release silenced mRNPs; moreover, GW182 dissociates from miRNA targets at a step of silencing downstream of deadenylation, indicating that GW182 is required to initiate but not to maintain silencing. In addition, we show that the GW182 bipartite silencing domain competes with eukaryotic initiation factor 4G for binding to PABPC1. The GW182-PABPC1 interaction is also required for miRNA target degradation; accordingly, we observed that PABPC1 associates with components of the CCR4-NOT deadenylase complex. Finally, we show that PABPC1 overexpression suppresses the silencing of miRNA targets. We propose a model in which the GW182 silencing domain promotes translational repression, at least in part, by interfering with mRNA circularization and also recruits the deadenylase complex through the interaction with PABPC1.In multicellular eukaryotes, the regulation of gene expression by microRNAs (miRNAs) is critical for biological processes as diverse as cell differentiation and proliferation, apoptosis, metabolism, and development (4). To exert a regulatory function, miRNAs associate with Argonaute proteins to form RNA-induced silencing complexes, which repress translation and trigger the degradation of target mRNAs (4, 10, 16). The extent to which translational repression and degradation contribute to silencing depends on the specific target-miRNA combination; some targets are regulated predominantly at the translational level, whereas others can be regulated mainly at the mRNA level (3). A large-scale proteomic analysis performed in parallel with measurements of mRNA levels showed that for the vast majority of miRNA targets, silencing correlates with changes at both the protein and mRNA levels (1, 27).In animal cells, the degradation of miRNA targets is initiated by deadenylation and decapping, which are followed by the exonucleolytic decay of the mRNA body (2, 3, 9, 11, 12, 17, 19, 24, 30, 31). miRNA-dependent mRNA degradation requires a variety of proteins: an Argonaute and a GW182 protein, the CCR4-NOT deadenylase complex, the decapping enzyme DCP2, and several decapping activators including DCP1, Ge-1, HPat, EDC3, and Me31B (also known as RCK/p54) (3, 6, 9, 12, 19). Several studies previously demonstrated that miRNAs trigger deadenylation and decapping even when the mRNA target is not translated (9, 12, 19, 24, 30, 31), indicating that mRNA decay is not merely a consequence of a primary effect of miRNAs on translation but rather is an independent mechanism by which miRNAs silence gene expression.Although how miRNAs trigger mRNA degradation is well established, the mechanisms driving the inhibition of translation are unclear. Multiple mechanisms have been proposed: the displacement of eukaryotic initiation factor 4E (eIF4E) from the mRNA cap structure, interference with the function of the eIF4F complex, a block of 60S ribosomal subunit joining, or an inhibition of translation elongation (4, 10, 16). Regardless of the precise mechanism, the translational repression of miRNA targets also requires GW182 family proteins (11, 13).GW182 proteins are essential components of the miRNA pathway in animal cells, as their depletion suppresses miRNA-mediated gene silencing (reviewed in references 8 and 13). Recent studies have revealed that the silencing activity of these proteins resides predominantly in a bipartite silencing domain containing the middle and C-terminal regions (14, 22, 33). The precise molecular function of the GW182 silencing domain is not fully understood, yet it is known that the domain is not required for GW182 proteins to interact with Argonaute proteins or to localize to P bodies (3, 14, 22). Furthermore, when the silencing domains of GW182 proteins are artificially tethered to mRNAs, their expression is silenced; therefore, tethering bypasses the requirement for Argonaute proteins and miRNAs (5, 22, 33). These observations suggest that the silencing domains of GW182 proteins exhibit intrinsic silencing activity and therefore likely play a role at the effector step of silencing (13, 14, 22, 33).Here we investigate what role the Drosophila melanogaster GW182 silencing domain plays in the miRNA pathway. Overall, our results reveal that the very C-terminal region of this domain is required for the release of GW182 from silenced mRNPs. Indeed, we unexpectedly found that we could detect D. melanogaster GW182 bound to miRNA targets only in cells depleted of components of the deadenylase complex. These results suggest that GW182 dissociates from Argonaute-1 (AGO1) and miRNA targets at a step of silencing downstream of deadenylation. In contrast, GW182 mutants lacking the C-terminal region remain stably bound to miRNA targets, even in wild-type cells, indicating that this region plays a role in the dissociation of GW182 from effector complexes. We further show that the bipartite silencing domain of GW182 interacts with PABPC1 and interferes with the binding of PABPC1 to eIF4G. The interaction of GW182 with PABPC1 is also required for the degradation of miRNA targets, most likely because the interaction facilitates the recruitment of the CCR4-NOT deadenylase complex. Accordingly, overexpressing PABPC1 suppresses the silencing of miRNA targets. Our findings uncover an unexpected role for PABPC1 in the miRNA pathway.  相似文献   

5.
6.
7.
8.
9.
The biofilm matrix contributes to the chemistry, structure, and function of biofilms. Biofilm-derived membrane vesicles (MVs) and DNA, both matrix components, demonstrated concentration-, pH-, and cation-dependent interactions. Furthermore, MV-DNA association influenced MV surface properties. This bears consequences for the reactivity and availability for interaction of matrix polymers and other constituents.The biofilm matrix contributes to the chemistry, structure, and function of biofilms and is crucial for the development of fundamental biofilm properties (46, 47). Early studies defined polysaccharides as the matrix component, but proteins, lipids, and nucleic acids are all now acknowledged as important contributors (7, 15). Indeed, DNA has emerged as a vital participant, fulfilling structural and functional roles (1, 5, 6, 19, 31, 34, 36, 41, 43, 44). The phosphodiester bond of DNA renders this polyanionic at a physiological pH, undoubtedly contributing to interactions with cations, humic substances, fine-dispersed minerals, and matrix entities (25, 41, 49).In addition to particulates such as flagella and pili, membrane vesicles (MVs) are also found within the matrices of gram-negative and mixed biofilms (3, 16, 40). MVs are multifunctional bilayered structures that bleb from the outer membranes of gram-negative bacteria (reviewed in references 4, 24, 27, 28, and 30) and are chemically heterogeneous, combining the known chemistries of the biofilm matrix. Examination of biofilm samples by transmission electron microscopy (TEM) has suggested that matrix material interacts with MVs (Fig. (Fig.1).1). Since MVs produced in planktonic culture have associated DNA (11, 12, 13, 20, 21, 30, 39, 48), could biofilm-derived MVs incorporate DNA (1, 39, 40, 44)?Open in a separate windowFIG. 1.Possible interactions between matrix polymers and particulate structures. Shown is an electron micrograph of a thin section through a P. aeruginosa PAO1 biofilm. During processing, some dehydration occurred, resulting in collapse of matrix material into fibrillate arrangements (black filled arrows). There is a suggestion of interactions occurring with particulate structures such as MVs (hollow white arrow) and flagella (filled white arrows) (identified by the appearance and cross-dimension of these highly ordered structures when viewed at high magnification), which was consistently observed with other embedded samples and also with whole-mount preparations of gently disrupted biofilms (data not shown). The scale bar represents 200 nm.  相似文献   

10.
Vesicular stomatitis virus (VSV) has long been regarded as a promising recombinant vaccine platform and oncolytic agent but has not yet been tested in humans because it causes encephalomyelitis in rodents and primates. Recent studies have shown that specific tropisms of several viruses could be eliminated by engineering microRNA target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. We therefore sought to determine whether microRNA targets could be engineered into VSV to ameliorate its neuropathogenicity. Using a panel of recombinant VSVs incorporating microRNA target sequences corresponding to neuron-specific or control microRNAs (in forward and reverse orientations), we tested viral replication kinetics in cell lines treated with microRNA mimics, neurotoxicity after direct intracerebral inoculation in mice, and antitumor efficacy. Compared to picornaviruses and adenoviruses, the engineered VSVs were relatively resistant to microRNA-mediated inhibition, but neurotoxicity could nevertheless be ameliorated significantly using this approach, without compromise to antitumor efficacy. Neurotoxicity was most profoundly reduced in a virus carrying four tandem copies of a neuronal mir125 target sequence inserted in the 3′-untranslated region of the viral polymerase (L) gene.Vesicular stomatitis virus (VSV) is a nonsegmented, negative-strand rhabdovirus widely used as a vaccine platform as well as an anticancer therapeutic. While VSV is predominantly a pathogen of livestock (34), it has a very broad species tropism. The cellular tropism of VSV is determined predominantly at postentry steps, since the G glycoprotein of the virus mediates entry into most tissues in nearly all animal species (10).Though viral entry can take place in nearly all cell types, in vivo models of VSV infection have revealed that the virus is highly sensitive to the innate immune response, limiting its pathogenesis (4). VSV is intensively responsive to type I interferon (IFN), as the double-stranded RNA (dsRNA)-dependent PKR (2), the downstream effector of pattern recognition receptors MyD88 (32), and other molecules mediate shutdown of viral translation and allow the adaptive immune response to clear the virus. The vulnerability of the virus to the type I IFN response, typically defective in many cancers, has been exploited to generate tumor-selective replication (49), such that the virus is now poised to enter phase I trials. However, the virus remains potently neurotoxic, causing lethal encephalitis not only in rodent models (7, 22, 53) but also in nonhuman primates (25).VSV very often infiltrates the central nervous system (CNS) through infection of the olfactory nerves (41). When administered intranasally, the virus replicates rapidly in the nasal epithelium and is transmitted to olfactory neurons, from which it then moves retrograde axonally to the brain and replicates robustly, causing neuropathogenesis. While intranasal inoculation does cause neuropathy in mice, neurotoxicity following viral administration also occurs when the virus is delivered intravascularly (47), intraperitoneally (42), and (not surprisingly) intracranially (13). Previously, other groups have modified the VSV genome to be more sensitive to cellular IFNs (49) and have actually encoded IFN in the virus (36). However, the former can result in attenuation of the virus, such that it has reduced anticancer potential, while the latter still results in lethal encephalitis (unpublished results). In order to mitigate the effects of VSV infection on the brain without perturbing the potent oncolytic activity of the virus, we utilized a microRNA (miRNA) targeting paradigm, whereby viral replication is restricted in the brain without altering the tropism of the virus for other tissues.To redirect the tissue tropism of anticancer therapeutics, we (26) and others (11, 14, 55) have previously exploited the tissue-specific expression of cellular miRNAs. miRNAs are ∼22-nucleotide (nt) regulatory RNAs that regulate a diverse and expansive array of cellular activities. Through recognition of sequence-complementary target elements, miRNAs can either translationally suppress or catalytically degrade both cellular (6) and viral (50) RNAs. We have determined that cellular miRNAs can potentially regulate numerous steps of a virus life cycle and that this regulation of the virus by endogenous miRNAs can then abrogate toxicities of replication-competent viruses (27; E. J. Kelly et al., unpublished data).miRNAs are known to be highly upregulated in many different tissues, including (but not limited to) muscle (40), lung (44), liver (15, 44), spleen (44, 46), and kidney (51). In addition, the brain has a number of upregulated miRNAs, with each different subtype of cell having a unique miRNA profile. miR-125 is highly upregulated in all cells in the brain (neurons, astrocytes, and glia cells), while miR-124 is found predominantly in neuronal cells (48). Glial cells and glioblastomas are thought to have decreased expression of miR-128 compared to neurons (17), while miR-134 is particularly abundant in dendrites of neurons in the hippocampus (43). In addition to these miRNAs, the tumor suppressor miRNA let-7 and miRs 9, 26, and 29 (51) are also found to be enriched in the brain, with expression varying not only between different cell types and regions of the brain but also temporally (48).MicroRNAs have previously been exploited to modulate the tissue tropism of nonreplicating lentiviral vectors (8, 9), as well as curbing known toxicities of replication-competent picornaviruses (5, 26), adenoviruses (11), herpes simplex virus 1 (33), and influenza A virus (39). In addition, a recombinant VSV encoding a tumor suppressor target was found to be responsive to sequence-complementary miRNAs in vitro, possibly by affecting expression of the matrix (M) protein (14), and evidence from Dicer-deficient mice suggests that endogenously expressed microRNA targets within the P and L genes of VSV could restrict enhanced pathogenicity of the virus (37). However, in vivo protection from neuropathogenesis by this means has not been demonstrated for VSV.Here we evaluate the efficiencies of different brain-specific miRNAs for shutting down gene expression and extensively characterize the ability of miRNA targeting to attenuate the neurotoxicity of vesicular stomatitis virus in vivo. We constructed and evaluated recombinant VSVs with miRNA target (miRT) insertions at different regions of the viral genome, with special focus upon those affecting viral L expression. In addition, we looked at the regulatory efficiency of different brain-specific miRNAs and the impact of miRT orientation on VSV replication and determined the impact of the virus on oncolytic activity in vivo.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号