首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NARK (nodule autoregulation receptor kinase) gene, a negative regulator of cell proliferation in nodule primordia in several legumes, encodes a receptor kinase that consists of an extracellular leucine-rich repeat and an intracellular serine/threonine protein kinase domain. The putative catalytic domain of NARK was expressed and purified as a maltose-binding or a glutathione S-transferase fusion protein in Escherichia coli. The recombinant NARK proteins showed autophosphorylation activity in vitro. Several regions of the NARK kinase domain were shown by mass spectrometry to possess phosphoresidues. The kinase-inactive protein K724E failed to autophosphorylate, as did three other proteins corresponding to phenotypically detected mutants defective in whole plant autoregulation of nodulation. A wild-type NARK fusion protein transphosphorylated a kinase-inactive mutant NARK fusion protein, suggesting that it is capable of intermolecular autophosphorylation in vitro. In addition, Ser-861 and Thr-963 in the NARK kinase catalytic domain were identified as phosphorylation sites through site-directed mutagenesis. The genes coding for the kinase-associated protein phosphatases KAPP1 and KAPP2, two putative interacting components of NARK, were isolated. NARK kinase domain phosphorylated recombinant KAPP proteins in vitro. Autophosphorylated NARK kinase domain was, in turn, dephosphorylated by both KAPP1 and KAPP2. Our results suggest a model for signal transduction involving NARK in the control of nodule development.  相似文献   

2.
FHA domains are phosphoThr recognition modules found in diverse signaling proteins, including kinase-associated protein phosphatase (KAPP) from Arabidopsis thaliana. The kinase-interacting FHA domain (KI-FHA) of KAPP targets it to function as a negative regulator of some receptor-like kinase (RLK) signaling pathways important in plant development and environmental responses. To aid in the identification of potential binding sites for the KI-FHA domain, we predicted (i) the structure of a representative KAPP-binding RLK, CLAVATA1, and (ii) the functional surfaces of RLK kinase domains using evolutionary trace analysis. We selected phosphopeptides from KAPP-binding Arabidopsis RLKs for in vitro studies of association with KI-FHA from KAPP. Three phosphoThr peptide fragments from the kinase domain of CLV1 or BAK1 were found to bind KI-FHA with KD values of 8-20 microM, by NMR or titration calorimetry. Their affinity is driven by favorable enthalpy and solvation entropy gain. Mutagenesis of these three threonine sites suggests Thr546 in the C-lobe of the BAK1 kinase domain to be a principal but not sole site of KI-FHA binding in vitro. The brassinosteroid receptor BRI1 and KAPP are shown to associate in vivo and in vitro. Further genetic studies indicate that KAPP may be a negative regulator of the BRI1 signaling transduction pathway. 15N-Labeled KI-FHA was titrated with the GST-BRI1 kinase domain and monitored by NMR. BRI1 interacts with the same 3/4, 4/5, 6/7, 8/9, and 10/11 recognition loops of KI-FHA, with similar affinity as the phosphoThr peptides.  相似文献   

3.
4.
The kinase-associated protein phosphatase (KAPP) is a regulator of the receptor-like kinase (RLK) signaling pathway. Loss-of-function mutations rag1-1 (root attenuated growth1-1) and rag1-2, in the locus encoding KAPP, cause NaCl hypersensitivity in Arabidopsis thaliana. The NaCl hypersensitive phenotype exhibited by rag1 seedlings includes reduced shoot and primary root growth, root tip swelling, and increased lateral root formation. The phenotype exhibited by rag1-1 seedlings is associated with a specific response to Na(+) toxicity. The sensitivity to Na(+) is Ca(2+) independent and is not due to altered intracellular K(+)/Na(+). Analysis of the genetic interaction between rag1-1 and salt overly sensitive1 (sos1-14) revealed that KAPP is not a component of the SOS signal transduction pathway, the only Na(+) homeostasis signaling pathway identified so far in plants. All together, these results implicate KAPP as a functional component of the RLK signaling pathway, which also mediates adaptation to Na(+) stress. RLK pathway components, known to be modulated by NaCl at the messenger RNA level, are constitutively down-regulated in rag1-1 mutant plants. The effect of NaCl on their expression is not altered by the rag1-1 mutation.  相似文献   

5.
6.
翻译控制肿瘤蛋白(Translationally controlled tumor protein, TCTP)广泛存在于真核细胞中,参与调节细胞分裂、植物生长发育,并介导植物抵御病原物侵染。蔗糖非酵解型蛋白激酶(SNF1-related protein kinase, SnRK1)在酵母、动物和植物中非常保守,并参与包括糖代谢和抵抗非生物和生物胁迫在内的一系列生理过程。本实验室前期工作证明TaTCTP响应叶锈菌侵染并参与诱发寄主产生防卫反应。为了深入探讨TaTCTP在叶锈菌侵染小麦诱发的防卫反应中发挥的作用,采用串联亲和纯化(TAP)与质谱(MS)联用技术,鉴定出SnRK1可能为TaTCTP潜在互作蛋白。文中对TCTP和SnRK1的相互作用进行了研究。酵母双杂交结果表明,同时携带TCTP和SnRK1的酵母可以在SD/-Leu/-Trp/-His/-Ade(SD/-LWHA,四缺)培养基上生长,说明TCTP与SnRK1在酵母双杂交系统中可以发生相互作用;通过双分子荧光互补实验,发现TCTP与SnRK1发生相互作用的荧光信号分布在细胞质中;进一步用Co-IP实验证明TCTP和SnRK1可以发生相互作用。本研究为深入研究TaTCTP在小麦与叶锈菌互作过程中的作用机制奠定了重要基础,对进一步完善小麦抵御叶锈菌侵染的分子机理具有重要意义。  相似文献   

7.
Sucrose nonfermenting-1 (Snf1)-related protein kinase-1 (SnRK1) of plants is a global regulator of carbon metabolism through the modulation of enzyme activity and gene expression. It is structurally and functionally related to the yeast protein kinase, Snf1, and to mammalian AMP-activated protein kinase. Two DNA sequences from Arabidopsis thaliana, previously known only by their data base accession numbers of NM_ 125448.3 (protein ID NP_200863) and NM_114393.3 (protein ID NP_566876) each functionally complemented a Saccharomyces cerevisiae elm1 sak1 tos3 triple mutant. This indicates that the Arabidopsis proteins are able to substitute for one of the missing yeast upstream kinases, which are required for activity of Snf1. Both plant proteins were shown to phosphorylate a peptide with the amino acid sequence of the phosphorylation site in the T-loop of SnRK1 and by inference SnRK1 in Arabidopsis. The proteins encoded by NM_125448.3 and NM_114393.3 have been named AtSnAK1 and AtSnAK2 (Arabidopsis thaliana SnRK1-activating kinase), respectively. We believe this is the first time that upstream activators of SnRK1 have been described in any plant species.  相似文献   

8.
Several calcium-independent protein kinases were activated by hyperosmotic and saline stresses in Arabidopsis cell suspension. Similar activation profiles were also observed in seedlings exposed to hyperosmotic stress. One of them was identified to AtMPK6 but the others remained to be identified. They were assumed to belong to the SNF1 (sucrose nonfermenting 1)-related protein kinase 2 (SnRK2) family, which constitutes a plant-specific kinase group. The 10 Arabidopsis SnRK2 were expressed both in cells and seedlings, making the whole SnRK2 family a suitable candidate. Using a family-specific antibody raised against the 10 SnRK2, we demonstrated that these non-MAPK protein kinases activated by hyperosmolarity in cell suspension were SnRK2 proteins. Then, the molecular identification of the involved SnRK2 was investigated by transient expression assays. Nine of the 10 SnRK2 were activated by hyperosmolarity induced by mannitol, as well as NaCl, indicating an important role of the SnRK2 family in osmotic signaling. In contrast, none of the SnRK2 were activated by cold treatment, whereas abscisic acid only activated five of the nine SnRK2. The probable involvement of the different Arabidopsis SnRK2 in several abiotic transduction pathways is discussed.  相似文献   

9.
10.
All life forms on earth require a continuous input and monitoring of carbon and energy supplies. The AMP-activated kinase (AMPK)/sucrose non-fermenting1 (SNF1)/Snf1-related kinase1 (SnRK1) protein kinases are evolutionarily conserved metabolic sensors found in all eukaryotic organisms from simple unicellular fungi (yeast SNF1) to animals (AMPK) and plants (SnRK1). Activated by starvation and energy-depleting stress conditions, they enable energy homeostasis and survival by up-regulating energy-conserving and energy-producing catabolic processes, and by limiting energy-consuming anabolic metabolism. In addition, they control normal growth and development as well as metabolic homeostasis at the organismal level. As such, the AMPK/SNF1/SnRK1 kinases act in concert with other central signaling components to control carbohydrate uptake and metabolism, fatty acid and lipid biosynthesis and the storage of carbon energy reserves. Moreover, they have a tremendous impact on developmental processes that are triggered by environmental changes such as nutrient depletion or stress. Although intensive research by many groups has partly unveiled the factors that regulate AMPK/SNF1/SnRK1 kinase activity as well as the pathways and substrates they control, several fundamental issues still await to be clarified. In this review, we will highlight these issues and focus on the structure, function and regulation of the AMPK/SNF1/SnRK1 kinases.  相似文献   

11.
12.
13.
A protein kinase that plays a key role in the global control of plant carbon metabolism is SnRK1 (sucrose non-fermenting-1-related protein kinase 1), so-called because of its homology and functional similarity with sucrose non-fermenting 1 (SNF1) of yeast. This article reviews studies on the characterization of SnRK1 gene families, SnRK1 regulation and function, interacting proteins, and the effects of manipulating SnRK1 activity on carbon metabolism and development.  相似文献   

14.
Phosphatidic acid (PA) is an important signalling lipid involved in various stress‐induced signalling cascades. Two SnRK2 protein kinases (SnRK2.4 and SnRK2.10), previously identified as PA‐binding proteins, are shown here to prefer binding to PA over other anionic phospholipids and to associate with cellular membranes in response to salt stress in Arabidopsis roots. A 42 amino acid sequence was identified as the primary PA‐binding domain (PABD) of SnRK2.4. Unlike the full‐length SnRK2.4, neither the PABD‐YFP fusion protein nor the SnRK2.10 re‐localized into punctate structures upon salt stress treatment, showing that additional domains of the SnRK2.4 protein are required for its re‐localization during salt stress. Within the PABD, five basic amino acids, conserved in class 1 SnRK2s, were found to be necessary for PA binding. Remarkably, plants overexpressing the PABD, but not a non‐PA‐binding mutant version, showed a severe reduction in root growth. Together, this study biochemically characterizes the PA–SnRK2.4 interaction and shows that functionality of the SnRK2.4 PABD affects root development.  相似文献   

15.
16.
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.  相似文献   

17.
The plant SNF1-related kinase (SnRK1) is the α-subunit of the SnRK1 heterotrimeric compleses. Although SnRK1 is widely known as a key regulator of plant response to various physiological processes including nutrient- and energy-sensing, regulation of global metabolism, and control of cell cycle, development, as well as abiotics stress, less is known about the function of SnRK1 during pathogen infection. Our previous work has demonstrated that a tomato SNF1-related kinase (SlSnRK1) can interact with and phosphorylate βC1, a pathogenesis protein encoded by tomato yellow leaf curl China betasatellite. Our results also showed that the plant SnRK1 can affect genimivirus infection in plant and reduce viral DNA accumulation. Phosphorylation of βC1 protein negatively impacts its function as a pathogenicity determinant. Here we provide more information on interaction between βC1 and SlSnRK1 and propose a mechanistic model for the SlSnRK1-mediated defense responses against geminiviruses and the potential role of SnRK1 in plant resistance to geminivirus.  相似文献   

18.
Abscisic acid (ABA) is a key regulator of plant responses to abiotic stresses, such as drought. Abscisic acid receptors and coreceptors perceive ABA to activate Snf1-related protein kinase2s (SnRK2s) that phosphorylate downstream effectors, thereby activating ABA signaling and the stress response. As stress responses come with fitness penalties for plants, it is crucial to tightly control SnRK2 kinase activity to restrict ABA signaling. However, how SnRK2 kinases are inactivated remains elusive. Here, we show that NUCLEAR PORE ANCHOR (NUA), a nuclear pore complex (NPC) component, negatively regulates ABA-mediated inhibition of seed germination and post-germination growth, and drought tolerance in Arabidopsis thaliana. The role of NUA in response to ABA depends on SnRK2.2 and SnRK2.3 for seed germination and on SnRK2.6 for drought. NUA does not directly inhibit the phosphorylation of these SnRK2s or affects their abundance. However, the NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, negatively regulates ABA signaling by directly interacting with and inhibiting SnRK2 phosphorylation and protein levels. More importantly, we demonstrated that SnRK2.6 can be SUMOylated in vitro, and ESD4 inhibits its SUMOylation. Taken together, we identified NUA and ESD4 as SnRK2 kinase inhibitors that block SnRK2 activity, and reveal a mechanism whereby NUA and ESD4 negatively regulate plant responses to ABA and drought stress possibly through SUMOylation-dependent regulation of SnRK2s.  相似文献   

19.
The sucrose non‐fermenting‐1‐related protein kinase 2 (SnRK2) family represents a unique family of plant‐specific protein kinases implicated in cellular signalling in response to osmotic stress. In our studies, we observed that two class 1 SnRK2 kinases, SnRK2.4 and SnRK2.10, are rapidly and transiently activated in Arabidopsis roots after exposure to salt. Under saline conditions, snrk2.4 knockout mutants had a reduced primary root length, while snrk2.10 mutants exhibited a reduction in the number of lateral roots. The reduced lateral root density was found to be a combinatory effect of a decrease in the number of lateral root primordia and an increase in the number of arrested lateral root primordia. The phenotypes were in agreement with the observed expression patterns of genomic yellow fluorescent protein (YFP) fusions of SnRK2.10 and ‐2.4, under control of their native promoter sequences. SnRK2.10 was found to be expressed in the vascular tissue at the base of a developing lateral root, whereas SnRK2.4 was expressed throughout the root, with higher expression in the vascular system. Salt stress triggered a rapid re‐localization of SnRK2.4–YFP from the cytosol to punctate structures in root epidermal cells. Differential centrifugation experiments of isolated Arabidopsis root proteins confirmed recruitment of endogenous SnRK2.4/2.10 to membranes upon exposure to salt, supporting their observed binding affinity for the phospholipid phosphatidic acid. Together, our results reveal a role for SnRK2.4 and ‐2.10 in root growth and architecture in saline conditions.  相似文献   

20.
In Arabidopsis cell suspension, hyperosmotic stresses (mannitol and NaCl) were previously shown to activate nine sucrose non-fermenting 1 related protein kinases 2 (SnRK2s) whereas only five of them were also activated by abscisic acid (ABA) treatment. Here, the possible activation by phosphorylation/dephosphorylation of each kinase was investigated by studying their phosphorylation state after osmotic stress, using the Pro-Q Diamond, a specific dye for phosphoproteins. All the activated kinases were phosphorylated after osmotic stress but the induced phosphorylation changes were clearly different depending on the kinase. In addition, the increase of the global phosphorylation level induced by ABA application was lower, suggesting that different mechanisms may be involved in SnRK2 activation by hyperosmolarity and ABA. On the other hand, SnRK2 kinases remain activated by hyperosmotic stress in ABA-deficient and ABA-insensitive mutants, indicating that SnRK2 osmotic activation is independent of ABA. Moreover, using a mutant form of SnRK2s, a specific serine in the activation loop was shown to be phosphorylated after stress treatments and essential for activity and/or activation. Finally, SnRK2 activity was sensitive to staurosporine, whereas SnRK2 activation by hyperosmolarity or ABA was not, indicating that SnRK2 activation by phosphorylation is mediated by an upstream staurosporine-insensitive kinase, in both signalling pathways. All together, these results indicate that different phosphorylation mechanisms and at least three signalling pathways are involved in the activation of SnRK2 proteins in response to osmotic stress and ABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号