首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Nucleotide excision repair (NER) is the most versatile and best studied DNA repair system in humans. NER can repair a variety of bulky DNA damages including UV-light induced DNA photoproducts. NER consists of a multistep process in which the DNA lesion is recognized and demarcated by DNA unwinding. Then, a ~28 bp DNA damage containing oligonucleotide is excised followed by gap filling using the undamaged DNA strand as a template. The consequences of defective NER are demonstrated by three rare autosomal-rezessive NER-defective syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). XP patients show severe sun sensitivity, freckling in sun exposed skin, and develop skin cancers already during childhood. CS patients exhibit sun sensitivity, severe neurologic abnormalities, and cachectic dwarfism. Clinical symptoms of TTD patients include sun sensitivity, freckling in sun exposed skin areas, and brittle sulfur-deficient hair. In contrast to XP patients, CS and TTD patients are not skin cancer prone. Studying these syndromes can increase the knowledge of skin cancer development including cutaneous melanoma as well as basal and squamous cell carcinoma in general that may lead to new preventional and therapeutic anticancer strategies in the normal population.  相似文献   

4.
Brooks PJ  Cheng TF  Cooper L 《DNA Repair》2008,7(6):834-848
The classic model for neurodegeneration due to mutations in DNA repair genes holds that DNA damage accumulates in the absence of repair, resulting in the death of neurons. This model was originally put forth to explain the dramatic loss of neurons observed in patients with xeroderma pigmentosum neurologic disease, and is likely to be valid for other neurodegenerative diseases due to mutations in DNA repair genes. However, in trichiothiodystrophy (TTD), Aicardi-Goutières syndrome (AGS), and Cockayne syndrome (CS), abnormal myelin is the most prominent neuropathological feature. Myelin is synthesized by specific types of glial cells called oligodendrocytes. In this review, we focus on new studies that illustrate two disease mechanisms for myelin defects resulting from mutations in DNA repair genes, both of which are fundamentally different than the classic model described above. First, studies using the TTD mouse model indicate that TFIIH acts as a co-activator for thyroid hormone-dependent gene expression in the brain, and that a causative XPD mutation in TTD results in reduction of this co-activator function and a dysregulation of myelin-related gene expression. Second, in AGS, which is caused by mutations in either TREX1 or RNASEH2, recent evidence indicates that failure to degrade nucleic acids produced during S-phase triggers activation of the innate immune system, resulting in myelin defects and calcification of the brain. Strikingly, both myelin defects and brain calcification are both prominent features of CS neurologic disease. The similar neuropathology in CS and AGS seems unlikely to be due to the loss of a common DNA repair function, and based on the evidence in the literature, we propose that vascular abnormalities may be part of the mechanism that is common to both diseases. In summary, while the classic DNA damage accumulation model is applicable to the neuronal death due to defective DNA repair, the myelination defects and brain calcification seem to be better explained by quite different mechanisms. We discuss the implications of these different disease mechanisms for the rational development of treatments and therapies.  相似文献   

5.
6.
7.
8.
9.
Cerebro-oculo-facio-skeletal (COFS) syndrome is a recessively inherited rapidly progressive neurologic disorder leading to brain atrophy, with calcifications, cataracts, microcornea, optic atrophy, progressive joint contractures, and growth failure. Cockayne syndrome (CS) is a recessively inherited neurodegenerative disorder characterized by low to normal birth weight, growth failure, brain dysmyelination with calcium deposits, cutaneous photosensitivity, pigmentary retinopathy and/or cataracts, and sensorineural hearing loss. Cultured CS cells are hypersensitive to UV radiation, because of impaired nucleotide-excision repair (NER) of UV-induced damage in actively transcribed DNA, whereas global genome NER is unaffected. The abnormalities in CS are caused by mutated CSA or CSB genes. Another class of patients with CS symptoms have mutations in the XPB, XPD, or XPG genes, which result in UV hypersensitivity as well as defective global NER; such patients may concurrently have clinical features of another NER syndrome, xeroderma pigmentosum (XP). Clinically observed similarities between COFS syndrome and CS have been followed by discoveries of cases of COFS syndrome that are associated with mutations in the XPG and CSB genes. Here we report the first involvement of the XPD gene in a new case of UV-sensitive COFS syndrome, with heterozygous substitutions-a R616W null mutation (previously seen in patients in XP complementation group D) and a unique D681N mutation-demonstrating that a third gene can be involved in COFS syndrome. We propose that COFS syndrome be included within the already known spectrum of NER disorders: XP, CS, and trichothiodystrophy. We predict that future patients with COFS syndrome will be found to have mutations in the CSA or XPB genes, and we document successful use of DNA repair for prenatal diagnosis in triplet and singleton pregnancies at risk for COFS syndrome. This result strongly underlines the need for screening of patients with COFS syndrome, for either UV sensitivity or DNA-repair abnormalities.  相似文献   

10.
11.
Spivak G 《Mutation research》2005,577(1-2):162-169
  相似文献   

12.
DNA repair in Cockayne syndrome.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cockayne syndrome (CS) is a rare recessive genetic disease characterized in part by premature ageing and photosensitive skin. Because of the latter characteristic, this syndrome was considered to be an example of a UV-sensitive DNA repair-defective human disorder. We demonstrated normal levels of UV-induced unscheduled DNA synthesis (UDS) in four unrelated CS patients that show hypersensitivity to both UV and Mitomycin C (MMC). At low UV exposure, CS DNA shows a dose-dependent decrease in size. By contrast, heterozygotes appear to have a threshold below which there is little change in size of single strand DNA. Immediately following UV or MMC treatment, CS DNA is deficient in high molecular weight species, but undergoes a normal transition to larger DNA during a chase interval in the presence or absence of caffeine. This suggests a defect in replication or excision repair and no defect in post-replication repair (PRR). Pulse studies performed in the presence of hydroxyurea (HU) also reveal a deficient production of large DNA, suggesting the defect is in repair. As these cells have normal UDS and normal PRR, the basis for their UV sensitivity must be distinct from that observed in xeroderma pigmentosum (XP).  相似文献   

13.
14.
15.
Two siblings are described whose clinical presentation of cutaneous photosensitivity and central nervous system dysfunction is strongly reminiscent of the DeSanctis-Cacchione syndrome (DCS) variant of xeroderma pigmentosum. An extensive clinical evaluation supported a diagnosis of DCS and documented previously unreported findings. In vitro fibroblast studies showed UV sensitivity that was two to three times that of normal controls. However, neither a post-UV-irradiation DNA excision-repair defect indicative of XP nor a semiconservative DNA replication defect indicative of XP variant was found. Rather, a failure of RNA synthesis to recover to normal levels after UV exposure was observed, a biochemical abnormality seen in Cockayne syndrome (CS), one of the premature-aging syndromes with clinical UV sensitivity. These patients, therefore, clinically have XP, but their biochemical characteristics suggest CS. The reason(s) for the severe neurologic disease, in light of the relatively mild cutaneous abnormalities, is unclear. Other cases with unusual fibroblast responses to irradiation have been noted in the literature and, along with the data from our patients, reinforce the notion of the complexity of DNA maintenance and repair.  相似文献   

16.
17.
Dubowitz Syndrome is an autosomal recessive disorder with a unique set of clinical features including microcephaly and susceptibility to tumor formation. Although more than 140 cases of Dubowitz syndrome have been reported since 1965, the genetic defects of this disease has not been identified. In this study, we systematically analyzed the DNA damage response and repair capability of fibroblasts established from a Dubowitz Syndrome patient. Dubowitz syndrome fibroblasts are hypersensitive to ionizing radiation, bleomycin, and doxorubicin. However, they have relatively normal sensitivities to mitomycin-C, cisplatin, and camptothecin. Dubowitz syndrome fibroblasts also have normal DNA damage signaling and cell cycle checkpoint activations after DNA damage. These data implicate a defect in repair of DNA double strand break (DSB) likely due to defective non-homologous end joining (NHEJ). We further sequenced several genes involved in NHEJ, and identified a pair of novel compound mutations in the DNA Ligase IV gene. Furthermore, expression of wild type DNA ligase IV completely complement the DNA repair defects in Dubowitz syndrome fibroblasts, suggesting that the DNA ligase IV mutation is solely responsible for the DNA repair defects. These data suggests that at least subset of Dubowitz syndrome can be attributed to DNA ligase IV mutations.  相似文献   

18.
19.
The rare hereditary disease xeroderma pigmentosum (XP) is clinically characterized by extreme sun sensitivity and an increased predisposition for developing skin cancer. Cultured cells from XP patients exhibit hypersensitivity to ultraviolet (UV) radiation due to the defect in nucleotide excision repair (NER), and other cellular abnormalities. Seven genes identified in the classical XP forms, XPA to XPG, are involved in the NER pathway. In view of developing a strategy of gene therapy for XP, we devised recombinant retrovirus-carrying DNA repair genes for transfer and stable expression of these genes in cells from XP patients. Results showed that these retroviruses are efficient tools for transducing XP fibroblasts and correcting repair-defective cellular phenotypes by recovering normal UV survival, unscheduled DNA synthesis, and RNA synthesis after UV irradiation, and also other cellular abnormalities resulting from NER defects. These results imply that the first step of cellular gene therapy might be accomplished successfully.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号