首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shown that RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion of the SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to the malfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.  相似文献   

2.
MEC1, the essential yeast homolog of the human ATR/ATM genes, controls the S-phase checkpoint and prevents replication fork collapse at slow zones of DNA replication. The viability of hypomorphic mec1-21 is reduced in the rad52 mutant, defective in homologous recombination, suggesting that replication generates recombinogenic lesions. We previously observed a 6-, 10- and 30-fold higher rate of spontaneous sister chromatid exchange (SCE), heteroallelic recombination and translocations, respectively, in mec1-21 mutants compared to wild-type. Here we report that the hyper-recombination phenotype correlates with lower deoxyribonucleoside triphosphate (dNTP) levels, compared to wild-type. By introducing a dun1 mutation, thus eliminating inducible expression of ribonucleotide reductase in mec1-21, rates of spontaneous SCE increased 15-fold above wild-type. All the hyper-recombination phenotypes were reduced by SML1 deletions, which increase dNTP levels. Measurements of dNTP pools indicated that, compared to wild-type, there was a significant decrease in dNTP levels in mec1-21, dun1 and mec1-21 dun1, while the dNTP levels of mec1-21 sml1, mec1-21 dun1 sml1 and sml1 mutants were ∼2-fold higher. Interestingly, higher dNTP levels in mec1-21 dun1 sml1 correlate with ∼2-fold higher rate of spontaneous mutagenesis, compared to mec1-21 dun1. We suggest that higher dNTP levels in specific checkpoint mutants suppress the formation of recombinogenic lesions.  相似文献   

3.
The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity. Increased RNR activity leads to a dramatic expansion of deoxyribonucleotide (dNTP) pools in G1 that allows cells to synthesize significant fractions of the genome in the presence of hydroxyurea in the subsequent S phase. Consistent with the recognized correlation between dNTP levels and spontaneous mutation, compromising ELG1 and PCNA results in a significant increase in mutation rates. Deletion of distinct genome stability genes RAD54, RAD55, and TSA1 also results in increased dNTP levels and mutagenesis, suggesting that this is a general phenomenon. Together, our data point to a vicious circle in which mutations in gatekeeper genes give rise to genomic instability during S phase, inducing expansion of the dNTP pool, which in turn results in high levels of spontaneous mutagenesis.  相似文献   

4.
Most bacteria are able to generate sufficient amounts of ATP from substrate level phosphorylation, thus rendering the respiratory oxidative phosphorylation non-critical. In mycobacteria, including Mycobacterium tuberculosis, ATP generation by oxidative phosphorylation is an essential process. Of the two types of NADH dehydrogenases (type I and type II), the type II NADH dehydrogenase (Ndh) which is inhibited by phenothiazines has been thought to be essential. In M. tuberculosis there are two Ndh isozymes (Ndh and NdhA) coded by ndh and ndhA genes respectively. Ndh and NdhA share a high degree of amino acid similarity. Both the enzymes have been shown to be enzymatically active and are inhibited by phenothiazines, suggesting a functional similarity between the two. We attempted gene knockout of ndh and ndhA genes in wild type and merodiploid backgrounds. It was found that ndh gene cannot be inactivated in a wild type background, though it was possible to do so when an additional copy of ndh was provided. This showed that in spite of its apparent functional equivalence, NdhA cannot complement the loss of Ndh in M. tuberculosis. We also showed that NdhA is not essential in M. tuberculosis as the ndhA gene could be deleted in a wild type strain of M. tuberculosis without causing any adverse effects in vitro. RT-PCR analysis of in vitro grown M. tuberculosis showed that ndhA gene is actively transcribed. This study suggests that despite being biochemically similar, Ndh and NdhA play different roles in the physiology of M. tuberculosis.  相似文献   

5.
Intracellular pool sizes of deoxyribonucleoside triphosphates (dNTPs) are highly regulated. Unbalanced dNTP pools, created by abnormal accumulation or deficiency of one nucleotide, are known to be mutagenic and to have other genotoxic consequences. Recent studies in our laboratory on DNA replication in vitro suggested that balanced accumulation of dNTPs, in which all four pools increase proportionately, also stimulates mutagenesis. In this paper, we ask whether proportional dNTP pool increases are mutagenic also in living cells. Escherichia coli was transformed with recombinant plasmids that overexpress E. coli genes nrdA and nrdB, which encode the two protein subunits of aerobic ribonucleotide reductase. Roughly proportional dNTP pool expansion, by factors of 2- to 6-fold in different experiments, was accompanied by increases in spontaneous mutation frequency of up to 40-fold. Expression of a catalytically inactive ribonucleotide reductase had no effect on either dNTP pools or mutagenesis, suggesting that accumulation of dNTPs is responsible for the increased mutagenesis. Preliminary experiments with strains defective in SOS regulon induction suggest a requirement for one or more SOS functions in the dNTP-enhanced mutagenesis. Because a replisome extending from correctly matched 3'-terminal nucleotides is almost certainly saturated with dNTP substrates in vivo, whereas chain extension from mismatched nucleotides almost certainly proceeds at sub-saturating rates, we propose that the mutagenic effect of proportional dNTP pool expansion is preferential stimulation of chain extension from mismatches as a result of increases in intracellular dNTP concentrations.  相似文献   

6.
Autonomous 3′→5′ exonucleases (AE) are not bound covalently to DNA polymerases, but they are often included into the replicative complexes. Intracellular AE overproduction in bacteria results in sharp suppression of mutagenesis, whereas inactivation of these enzymes in bacteria and fungi leads to an increase in mutagenesis frequency by 2–3 orders of magnitude. Correction of DNA polymerase errors in vitro occurs after addition of AE to the incubation medium. This correction is clearly manifested under conditions of mutational stress (during induced but not spontaneous mutagenesis), for instance, with an imbalance of dNTPs — error-prone conditions. At equimolar dNTP (error-free conditions), the correction is relatively weak. The gene knockout of both alleles of the major AE gene in mice does not influence spontaneous mutagenesis though a substantial increase could be expected. The frequency of induced mutagenesis has not been yet measured, though the inactivation of AE could increase the frequency of mutagenesis. Complete inactivation of the major AE leads to inflammatory myocarditis and a 5-fold reduction of life span of mice. Dominant heterozygous mutations were found in various loci of the AE gene, which caused the development of Aicardi-Goutieres (autosomal recessive encephalopathy) syndrome, familial chilblain lupus, systemic lupus erythematosus, retinal vasculopathy, and cerebral leukodystrophy. In the nucleus, AE have a corrective function, but after transition into cytoplasm these enzymes destroy aberrant DNA that appears during replication and thereby save the cells from autoimmune diseases. Depending on their intracellular localization, AE carry out various biological functions but employ the same mechanism of the catalyzed reactions.  相似文献   

7.
I.G. Young  B.J. Wallace   《BBA》1976,449(3):376-385
A strain carrying a point mutation affecting the NADH dehydrogenase complex of Escherichia coli has been isolated and its properties examined. The gene carrying the mutation (designated ndh) was located on the E. coli chromosome at about minute 23 and was shown to be cotransducible with the pyrC gene. Strains carrying the ndh? allele were found to be unable to grow on mannitol and to grow very poorly on glucose unless the medium was supplemented with succinate, acetate or casamino acids.The following properties of strains carrying the ndh? allele were established which suggest that the mutation affects the NADH dehydrogenase complex but apparently not the primary dehydrogenase. Membrane preparations possess normal to elevated levels of d-lactate oxidase and succinate oxidase activities but NADH oxidase is absent. NADH is unable to reduce ubiquinone in the aerobic steady state and reduces cytochrome b very slowly when the membranes become anaerobic. NADH dehydrogenase, measured as NADH-dichlorophenolindophenol reductase is reduced but not absent. NADH oxidase is stimulated by menadione although not by Q-3 or MK-1 and in the presence of menadione, cytochrome b is reduced normally by NADH.Further mutants affected in NADH oxidase were isolated using a screening procedure based on the growth characteristics of the original ndh? strain. The mutations carried by these strains were all cotransducible with the pyrC gene and the biochemical properties of the additional mutants were similar to those of the original mutant.The properties of the group of ndh? mutants established so far suggest that they are affected in the transfer of reducing equivalents from the NADH dehydrogenase complex to ubiquinone.  相似文献   

8.
Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rifr and the gyrB gene leading to Nalr and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation.  相似文献   

9.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the λ Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

10.
Eukaryotic genomes are duplicated by a complex machinery, utilizing high fidelity replicative B-family DNA polymerases (pols) α, δ and ε. Specialized error-prone pol ζ, the fourth B-family member, is recruited when DNA synthesis by the accurate trio is impeded by replication stress or DNA damage. The damage tolerance mechanism dependent on pol ζ prevents DNA/genome instability and cell death at the expense of increased mutation rates. The pol switches occurring during this specialized replication are not fully understood. The loss of pol ζ results in the absence of induced mutagenesis and suppression of spontaneous mutagenesis. Disruption of the Fe-S cluster motif that abolish the interaction of the C-terminal domain (CTD) of the catalytic subunit of pol ζ with its accessory subunits, which are shared with pol δ, leads to a similar defect in induced mutagenesis. Intriguingly, the pol3-13 mutation that affects the Fe-S cluster in the CTD of the catalytic subunit of pol δ also leads to defective induced mutagenesis, suggesting the possibility that Fe-S clusters are essential for the pol switches during replication of damaged DNA. We confirmed that yeast strains with the pol3-13 mutation are UV-sensitive and defective in UV-induced mutagenesis. However, they have increased spontaneous mutation rates. We found that this increase is dependent on functional pol ζ. In the pol3-13 mutant strain with defective pol δ, there is a sharp increase in transversions and complex mutations, which require functional pol ζ, and an increase in the occurrence of large deletions, whose size is controlled by pol ζ. Therefore, the pol3-13 mutation abrogates pol ζ-dependent induced mutagenesis, but allows for pol ζ recruitment for the generation of spontaneous mutations and prevention of larger deletions. These results reveal differential control of the two major types of pol ζ-dependent mutagenesis by the Fe-S cluster present in replicative pol δ.  相似文献   

11.
12.
13.
14.
The yeast genes IXR1 and HMO1 encode proteins belonging to the family of chromatin nonhistone proteins, which are able to recognize and bind to irregular DNA structures. The full deletion of gene IXR1 leads to an increase in cell resistance to the lethal action of UV light, γ-rays, and MMS, increases spontaneous mutagenesis and significantlly decreases the level of UV-induced mutations. It was earlier demonstrated in our works that the hmo1 mutation renders cells sensitive to the lethal action of cisplatin and virtually does not affect the sensitivity to UV light. Characteristically, the rates of spontaneous and UV-induced mutagenesis in the mutant are increased. Epistatic analysis of the double mutation hmo1 ixr1 demonstrated that the interaction of these genes in relation to the lethal effect of cisplatin and UV light, as well as UV-induced mutagenesis, is additive. This suggests that the products of genes HMO1 and IXR1 participate in different repair pathways. The ixr1 mutation significantly increases the rate of spontaneous mutagenesis mediated by replication errors, whereas mutation hmo1 increases the rate of repair mutagenesis. In wild-type cells, the level of spontaneous mutagenesis was nearly one order of magnitude lower than that obtained in cells of the double mutant. Consequently, the combined activity of the Hmo1 and the Ixr1 proteins provides efficient correction of both repair and replication errors.  相似文献   

15.
Summary The numbers of tyrosine tRNA ochre suppressor mutations arising spontaneously or after UV irradiation in different strains of Escherichia coli K12 are considered. The DNA sequence change requisite for this type of mutation would be a transversion at a cytosine between two purines, where pyrimidine-pyrimidine photoproducts could not form. We find that UV mutagenesis does not produce these tyrosine tRNA ochre suppressor mutations. With lexA51 recA441 defective cells, the spontaneous yield of these mutations is elevated and UV irradiation produces a significant decrease in the numbers of this particular mutation. As explanation we suggest that the spontaneous appearance of these mutations reflects mutation at apurinic sites, the efficiency of which is elevated in lexA51 recA441 cells (with derepressed SOS functions and an activated form of RecA protein). The addition of UV damage in the DNA of these cells cannot further stimulate the positive functions that are required for the production of these mutations and are typically associated with UV mutagenesis (induction of SOS functions, activation of RecA protein and introduction of a targeting photoproduct) but apparently can have a negative effect on mutagenesis, hitherto not realized.  相似文献   

16.
17.
We reported previously that an ndhB gene disruptant, ΔndhB, had the same phenotype as wild-type tobacco plants under normal growth conditions. Two other groups have reported conflicting phenotypes with each other for ndhCKJ operon disruptants. Here, we generated two transformants in which the ndhCKJ operon was disrupted, and found that new transformants had the same phenotype as ΔndhB. After illumination with visible light, all ndh disruptants had higher levels of steady-state fluorescence than wild-type controls when measured under weak light, suggesting that reduction of the plastoquinone pool in ndh disruptants was greater than that in wild-type controls. The weak light itself could not reduce the plastoquinone much, so the reduction in the plastoquinone in the mutant was due to electron donation from stromal reductants generated during illumination with the strong light. These results supported the hypothesis that NAD(P)H dehydrogenase prevents overreduction in chloroplasts and suggested that chlororespiratory oxidase did not function under low light or in the dark.  相似文献   

18.
Replication of the mitochondrial genome by DNA polymerase γ requires dNTP precursors that are subject to oxidation by reactive oxygen species generated by the mitochondrial respiratory chain. One such oxidation product is 8-oxo-dGTP, which can compete with dTTP for incorporation opposite template adenine to yield A-T to C-G transversions. Recent reports indicate that the ratio of undamaged dGTP to dTTP in mitochondrial dNTP pools from rodent tissues varies from ~1:1 to >100:1. Within this wide range, we report here the proportion of 8-oxo-dGTP in the dNTP pool that would be needed to reduce the replication fidelity of human DNA polymerase γ. When various in vivo mitochondrial dNTP pools reported previously were used here in reactions performed in vitro, 8-oxo-dGTP was readily incorporated opposite template A and the resulting 8-oxo-G-A mismatch was not proofread efficiently by the intrinsic 3′ exonuclease activity of pol γ. At the dNTP ratios reported in rodent tissues, whether highly imbalanced or relatively balanced, the amount of 8-oxo-dGTP needed to reduce fidelity was <1% of dGTP. Moreover, direct measurements reveal that 8-oxo-dGTP is present at such concentrations in the mitochondrial dNTP pools of several rat tissues. The results suggest that oxidized dNTP precursors may contribute to mitochondrial mutagenesis in vivo, which could contribute to mitochondrial dysfunction and disease.  相似文献   

19.
X Zhang  Q Lu  M Inouye    C K Mathews 《Journal of bacteriology》1996,178(14):4115-4121
Bacteriophage T4 encodes nearly all of its own enzymes for synthesizing DNA and its precursors. An exception is nucleoside diphosphokinase (ndk gene product), which catalyzes the synthesis of ribonucleoside triphosphates and deoxyribonucleoside triphosphates (dNTPs) from the corresponding diphosphates. Surprisingly, an Escherichia coli ndk deletion strain grows normally and supports T4 infection. As shown elsewhere, these ndk mutant cells display both a mutator phenotype and deoxyribonucleotide pool abnormalities. However, after T4 infection, both dNTP pools and spontaneous mutation frequencies are near normal. An E. coli strain carrying deletions in ndk and pyrA and pyrF, the structural genes for both pyruvate kinases, also grows and supports T4 infection. We examined anaerobic E. coli cultures because of reports that in anaerobiosis, pyruvate kinase represents the major route for nucleoside triphosphate synthesis in the absence of nucleoside diphosphokinase. The dNTP pool imbalances and the mutator phenotype are less pronounced in the anaerobic than in the corresponding aerobic ndk mutant strains. Anaerobic dNTP pool data, which have not been reported before, reveal a disproportionate reduction in dGTP, relative to the other pools, when aerobic and anaerobic conditions are compared. The finding that mutagenesis and pool imbalances are mitigated in both anaerobic and T4-infected cultures provides strong, if circumstantial, evidence that the mutator phenotype of ndk mutant cells is a result of the dNTP imbalance. Also, the viability of these cells indicates the existence of a second enzyme system in addition to nucleoside diphosphokinase for nucleoside triphosphate synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号