首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

There is a natural floral organ mutant of rice (var. Jugal) where the florets, popularly known as spikelet bear multiple carpels and produce multiple kernels in most of its grain. In our earlier work a detailed study has been done on its morpho-anatomical structure with allelic diversity and expression study of the major genetic loci associated with floral organ development. In present study high throughput whole genome sequencing was done which generated about of 3.7 million base pair genomic data for downstream analysis. The reads were about 101 bases long and mapped to the Oryza sativa var. Nipponbare as reference genome. Genome wide variant analysis detected 1,096,419 variants which included 943,033 SNPs and 153,386 InDels. A total of 24,920 non-synonymous SNPs were identified for 11,529 identified genes. Chromosome-wise distribution of uniquely mapped reads onto reference genome showed that maximum reads were mapped to 1st chromosome and least to 9th chromosome. 10th chromosome showed highest density of variations (about 325.6 per 100 kb genome sequence). Detailed sequence analysis of 23 floral organ developmental genes detected 419 potent variants where DL (Drooping Leaf) and OSH1 (Oryza sativa Homeobox1) genes showed highest number (32) of variants; whereas, MADS21 (Minichromosome Agamous Deficient Serum Factor 21) gene have lowest number (5) of variants. The information generated in this study will enrich the genomics of floral organ development in indica rice and cereal crops in general.

  相似文献   

2.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae (Moryzae), is one of the most destructive and widespread plant diseases in the world. Utilization of resistance genes in rice breeding is considered to be an effective and economical method to control this disease. To identify new sources of blast resistance, a set of 1160 introgression lines (ILs) containing chromosome segments of Chaling common wild rice (Oryza rufipogon Griff.) in the genetic background of an elite indica rice variety 93-11 were developed and phenotyped in the blast nursery. Thirty-three ILs displaying stable blast resistance in three consecutive years were obtained. Among them, one line, IL1043, was subsequently found to be resistant to all of the 28 M. oryzae isolates from different regions through artificial inoculation in greenhouse. By combining bulk segregant analysis coupled with next-generation sequencing (BSA-seq) and recessive class analysis (RCA), a major blast resistance gene in IL1043, designated Picl(t), was mapped on rice chromosome 6 flanked by the markers RM527 and Indel6 with an interval of approximately 925 kb, which covers the Pi2/9 locus. These results will facilitate fine mapping and cloning of Picl(t), and the linked markers will further provide a useful tool for rice blast resistance breeding.  相似文献   

3.
Advances in next-generation sequencing technologies have aided discovery of millions of genome-wide DNA polymorphisms, single nucleotide polymorphisms (SNPs) and insertions-deletions (InDels), which are an invaluable resource for marker-assisted breeding. Whole-genome resequencing of six elite indica rice inbreds (three cytoplasmic male sterile and three restorer lines) resulted in the generation of 338?million 75-bp paired-end reads, which provided 85.4% coverage of the Nipponbare genome. A total of 2?819?086 nonredundant DNA polymorphisms including 2?495?052 SNPs, 160?478 insertions and 163?556 deletions were discovered between the inbreds and Nipponbare, providing an average of 6.8 SNPs/kb across the genome. Distribution of SNPs and InDels in the chromosome was nonrandom with SNP-rich and SNP-poor regions being evident across the genome. A contiguous 4.3-Mb region on chromosome 5 with extremely low SNP density was identified. Overall, 83?262 nonsynonymous SNPs spanning 16?379 genes and 3620 nonsynonymous InDels in 2625 genes have been discovered which provide valuable insights into the basis underlying performance of the inbreds and the hybrids between these inbred combinations. SNPs and InDels discovered from this diverse set of indica rice inbreds not only enrich SNP resources for molecular breeding but also enable the study of genome-wide variations on hybrid performance.  相似文献   

4.
Genetic diversity within parental lines of hybrid rice is the foundation of heterosis utilization and yield improvement. Previous studies have suggested that genetic diversity was narrow in cytoplasmic male sterile (CMS/A line) and restorer lines (R line) for Three-line hybrid rice. However, the genetic diversity within maintainer lines (B line), especially at a genome-wide scale, remains largely unknown. In the present study, we performed deep re-sequencing of the elite maintainer line V20B (Oryza sativa L. ssp. indica). We then compared the V20B sequence with the 93-11 (Oryza sativa L. ssp. indica) genome sequence. 112.1 × 106 paired-end reads (PE reads) were generated with approximately 30-fold sequencing depth. The V20B PE reads uniquely covered 87.6 % of the 93-11 genome sequence. Overall, a total of 660,778 single-nucleotide polymorphism (SNPs) and 266,301 insertions and deletions (InDels) were identified, yielding an average of 2.1 SNPs/kb and 0.8 InDels/kb. Genome-wide distribution of the SNPs and InDels was non-random, and variation-rich and variation-poor regions were identified in all chromosomes. A total of 20,562 non-synonymous SNPs spanning 8,854 genes were annotated. Our results identified DNA polymorphisms at the genome-wide scale and uncovered the high level of genetic diversity between V20B and 93-11. Our results proved that next-generation sequencing technologies can be powerful tools to study genome-wide DNA polymorphisms, to query genetic diversity, and to enable molecular improvement efforts with Three-line hybrid rice. Further, our results also indicated that 93-11 could be used as core germplasm for the improvement of wild-abortive CMS lines and the maintainer lines.  相似文献   

5.
Next‐generation sequencing technologies provide opportunities to understand the genetic basis of phenotypic differences, such as abiotic stress response, even in the closely related cultivars via identification of large number of DNA polymorphisms. We performed whole‐genome resequencing of three rice cultivars with contrasting responses to drought and salinity stress (sensitive IR64, drought‐tolerant Nagina 22 and salinity‐tolerant Pokkali). More than 356 million 90‐bp paired‐end reads were generated, which provided about 85% coverage of the rice genome. Applying stringent parameters, we identified a total of 1 784 583 nonredundant single‐nucleotide polymorphisms (SNPs) and 154 275 InDels between reference (Nipponbare) and the three resequenced cultivars. We detected 401 683 and 662 509 SNPs between IR64 and Pokkali, and IR64 and N22 cultivars, respectively. The distribution of DNA polymorphisms was found to be uneven across and within the rice chromosomes. One‐fourth of the SNPs and InDels were detected in genic regions, and about 3.5% of the total SNPs resulted in nonsynonymous changes. Large‐effect SNPs and InDels, which affect the integrity of the encoded protein, were also identified. Further, we identified DNA polymorphisms present in the differentially expressed genes within the known quantitative trait loci. Among these, a total of 548 SNPs in 232 genes, located in the conserved functional domains, were identified. The data presented in this study provide functional markers and promising target genes for salinity and drought tolerance and present a valuable resource for high‐throughput genotyping and molecular breeding for abiotic stress traits in rice.  相似文献   

6.
7.
《Genomics》2022,114(4):110387
Soybean mosaic virus (SMV) strain SC11 was prevalent in middle China. Its resistance was controlled by a Mendelian single dominant gene RSC11K in soybean Kefeng-1. This study aimed at mapping RSC11K and identifying its candidate gene. RSC11K locus was mapped ~217 kb interval between two SNP-linkage-disequilibrium-blocks (Gm02_BLOCK_11273955_11464884 and Gm02_BLOCK_11486875_11491354) in W82.a1.v1 genome using recombinant inbred lines population derived from Kefeng-1 (Resistant) × NN1138-2 (Susceptible), but inserted with a ~245 kb segment in W82.a2.v1 genome. In the entire 462 kb RSC11K region, 429 SNPs, 142 InDels and 34 putative genes were identified with more SNPs/InDels distributed in non-functional regions. Thereinto, ten genes contained SNP/InDel variants with high and moderate functional impacts on proteins, among which Glyma.02G119700 encoded a typical innate immune receptor-like kinase involving in virus disease process and responded to SMV inoculation, therefore was recognized as RSC11K's candidate gene. The novel RSC11K locus and candidate genes may help developing SMV resistance germplasm.  相似文献   

8.
With the Illumina BovineSNP50K BeadChip, we performed a genome‐wide association study (GWAS) for two pigmentation traits in a Chinese Holstein population: proportion of black (PB) and teat colour (TC). A case–control design was used. Cases were the cows with PB <0.30 (= 129) and TC <2 points (= 140); controls were those with PB >0.90 (= 58) and TC >4 points (= 281). The RM test of roadtrips (version 1.2) was applied to detect SNPs for the two traits with 42 883 and 42 741 SNPs respectively. A total of nine and 12 genome‐wide significant (< 0.05) SNPs associated with PB and TC respectively were identified. Of these, two SNPs for PB were located within the KIT and IGFBP7 genes, and the other four SNPs were 23~212 kb away from the PDGFRA gene on BTA6; nine SNPs associated with TC were located within or 21~78.8 kb away from known genes on chromosomes 4, 11, 22, 23 and 24. By combing through our GWAS results and the biological functions of the genes, we suggest that the KIT, IGFBP7, PDGFRA, MITF, ING3 and WNT16 genes are promising candidates for PB and TC in Holstein cattle, providing a basis for further investigation on the genetic mechanism of pigmentation formation.  相似文献   

9.
Genetic improvement is important for the poultry industry, contributing to increased efficiency of meat production and quality. Because breast muscle is the most valuable part of the chicken carcass, knowledge of polymorphisms influencing this trait can help breeding programs. Therefore, the complete genome of 18 chickens from two different experimental lines (broiler and layer) from EMBRAPA was sequenced, and SNPs and INDELs were detected in a QTL region for breast muscle deposition on chicken chromosome 2 between microsatellite markers MCW0185 and MCW0264 (105 849–112 649 kb). Initially, 94 674 unique SNPs and 10 448 unique INDELs were identified in the target region. After quality filtration, 77% of the SNPs (85 765) and 60% of the INDELs (7828) were retained. The studied region contains 66 genes, and functional annotation of the filtered variants identified 517 SNPs and three INDELs in exonic regions. Of these, 357 SNPs were classified as synonymous, 153 as non‐synonymous, three as stopgain, four INDELs as frameshift and three INDELs as non‐frameshift. These exonic mutations were identified in 37 of the 66 genes from the target region, three of which are related to muscle development (DTNA, RB1CC1 and MOS). Fifteen non‐tolerated SNPs were detected in several genes (MEP1B, PRKDC, NSMAF, TRAPPC8, SDR16C5, CHD7, ST18 and RB1CC1). These loss‐of‐function and exonic variants present in genes related to muscle development can be considered candidate variants for further studies in chickens. Further association studies should be performed with these candidate mutations as should validation in commercial populations to allow a better explanation of QTL effects.  相似文献   

10.
A disorder of sex development (DSD) in dogs with female sex chromosomes (78, XX), a lack of the SRY gene and the presence of testes or ovotestes is commonly diagnosed in numerous breeds. The molecular background of DSD is not fully recognized but has been linked to the copy number variation in the region harboring the SOX9 gene. We applied a genome‐wide association study and targeted next‐generation sequencing techniques to compare DSD and normal female dogs. The genome‐wide association study did not indicate a significant chromosome region. Targeted next‐generation sequencing of a 1.5‐Mb region on canine chromosome 9 harboring the SOX9 gene revealed two putatively DSD‐associated copy number variations 355 kb upstream and 691 kb downstream of SOX9, four blocks of low polymorphism and two blocks of an elevated heterozygosity. An initial next‐generation sequencing analysis showed an association with two SNPs, but validation in larger cohorts did not confirm this result. We identified a large homologous fragment (over 243.8 kb), named hfMAGI2, located upstream of SOX9, that overlaps a known copy number variation region. It shows a high sequence similarity with the 5′ flanking region of the MAGI2 gene located on canine chromosome 18 that encodes a protein involved in ovary formation during early embryonic development. Our study showed that the identified copy number variation region located upstream of the SOX9 gene contains potential regulatory sequences (long non‐coding RNA and hfMAGI2) and led to the assumption that a multiplication of this element may alter expression of the SOX9 gene, triggering the DSD phenotype.  相似文献   

11.
Cultivated European rice germplasm is generally characterized by moderate to high sensitivity to blast, and blast resistance is therefore one of the most important traits to improve in rice breeding. We collected a panel of 25 rice genotypes containing 13 broad range rice resistance genes that are commonly used in breeding programs around the world: Pi1, Pi2, Pi5, Pi7, Pi9, Pi33, Pib, Pik, Pik-p, Pita, Pita 2 , Piz and Piz-t. The efficiency of the selected Pi genes towards Italian blast pathotypes was tested via artificial inoculation and under natural field infection conditions. To characterize haplotypes present in the chromosomal regions of the blast resistance genes, a polymorphism search was conducted in the sequence regions adjacent to the blast resistance by examining DNA from the Pi gene donors with a panel of 5–7 potential receivers (cultivated European rice genotypes). Seven InDel and 8 presence/absence polymorphisms were directly detected by gel analysis after DNA amplification, while sequencing of 12.870 bp through 32 loci in different genotypes revealed 85 SNP (one SNP every 151 bp). Seven SSRs were additionally tested revealing 5 polymorphic markers between donors and receivers. Polymorphisms were used to develop 35 PCR-based molecular markers suitable for introgressing of Pi genes into a set of the European rice germplasm. For this last purpose, allelic molecular marker variation was evaluated within a representative collection of about 95 rice genotypes. Polymorphic combinations allowing introgression of the broad spectrum resistance genes into a susceptible genetic background have been identified, thus confirming the potential of the identified markers for molecular-assisted breeding.  相似文献   

12.
Finding novel sources of resistance (R) to rice blast disease should facilitate breeding for improved resistance. The objectives of the present study were to evaluate reactions to blast and identify in a space-induced mutant an R gene to a representative isolate of rice blast pathogen. The mutant H4, its parent and twelve monogenic lines were evaluated for their responses to 35 isolates collected from Guangdong Province, China. H4 was found to be resistant to more isolates than its parent and the twelve monogenic lines, suggesting newly acquired resistance may be a function of one or more R genes. A representative isolate GD0193 was used to identify and map the R gene from H4. Genetic analysis revealed that resistance to the isolate GD0193 was controlled by a single dominant gene, designated Pi46(t). Linkage analysis using susceptible F2 individuals showed that Pi46(t) was mapped between the markers RM224 and RM27360 within 1.04 and 1.2 cM on the long arm of chromosome 11. Subsequently, Pi46(t) was delimited to an interval of approximately 183.7 kb flanked by the markers K67 and T94. These results provide essential information for the cloning of the Pi46(t) gene and will facilitate marker-assisted selection in rice breeding.  相似文献   

13.
Shen YJ  Jiang H  Jin JP  Zhang ZB  Xi B  He YY  Wang G  Wang C  Qian L  Li X  Yu QB  Liu HJ  Chen DH  Gao JH  Huang H  Shi TL  Yang ZN 《Plant physiology》2004,135(3):1198-1205
DNA polymorphism is the basis to develop molecular markers that are widely used in genetic mapping today. A genome-wide rice (Oryza sativa) DNA polymorphism database has been constructed in this work using the genomes of Nipponbare, a cultivar of japonica, and 93-11, a cultivar of indica. This database contains 1,703,176 single nucleotide polymorphisms (SNPs) and 479,406 Insertion/Deletions (InDels), approximately one SNP every 268 bp and one InDel every 953 bp in rice genome. Both SNPs and InDels in the database were experimentally validated. Of 109 randomly selected SNPs, 107 SNPs (98.2%) are accurate. PCR analysis indicated that 90% (97 of 108) of InDels in the database could be used as molecular markers, and 68% to 89% of the 97 InDel markers have polymorphisms between other indica cultivars (Guang-lu-ai 4 and Long-te-pu B) and japonica cultivars (Zhong-hua 11 and 9522). This suggests that this database can be used not only for Nipponbare and 93-11, but also for other japonica and indica cultivars. While validating InDel polymorphisms in the database, a set of InDel markers with each chromosome 3 to 5 marker was developed. These markers are inexpensive and easy to use, and can be used for any combination of japonica and indica cultivars used in this work. This rice DNA polymorphism database will be a valuable resource and important tool for map-based cloning of rice gene, as well as in other various research on rice (http://shenghuan.shnu.edu.cn/ricemarker).  相似文献   

14.
We assessed the utility of single-nucleotide polymorphisms (SNPs) and small insertion/deletion polymorphisms (InDels) as DNA markers in genetic analysis and breeding of rice. Toward this end, we surveyed SNPs and InDels in the chromosomal region containing the Piz and Piz-t rice blast resistance genes and developed PCR-based markers for typing the SNPs. Analysis of sequences from a blast-susceptible Japanese cultivar and two cultivars each containing one of these genes revealed that SNPs are abundant in the Piz and Piz-t regions (on average, one SNP every 248 bp), but the number of InDels was much lower. The dense distribution of SNPs facilitated the generation of SNP markers in the vicinity of the genes. For typing these SNPs, we used a modified allele-specific PCR method. Of the 49 candidate allele-specific markers, 33 unambiguously and reproducibly discriminated between the two alleles. We used the markers for mapping the Piz and Piz-t genes and evaluating the size of DNA segments introgressed from the Piz donor cultivar in Japanese near-isogenic lines containing Piz. Our findings suggest that, because of its ability to generate numerous markers within a target region and its simplicity in assaying genotypes, SNP genotyping with allele-specific PCR is a valuable tool for gene mapping, map-based cloning, and marker-assisted selection in crops, especially rice.Communicated by D.J. Mackill  相似文献   

15.
Toxicity due to high levels of soil boron (B) represents a significant limitation to cereal production in some regions, and the Bo1 gene provides a major source of B toxicity tolerance in bread wheat (Triticum aestivum L.). A novel approach was used to develop primers to amplify and sequence gene fragments specifically from the Bo1 region of the hexaploid wheat genome. Single-nucleotide polymorphisms (SNPs) identified were then used to generate markers close to Bo1 on the distal end of chromosome 7BL. In the 16 gene fragments totaling 19.6 kb, SNPs were observed between the two cultivars Cranbrook and Halberd at a low frequency (one every 613 bp). Furthermore, SNPs were distributed unevenly, being limited to only two genes. In contrast, RFLP provided a much greater number of genetic markers, with every tested gene identifying polymorphism. Bo1 previously known only as a QTL was located as a discrete Mendelian locus. In total, 28 new RFLP, PCR and SSR markers were added to the existing map. The 1.8 cM Bo1 interval of wheat corresponds to a 227 kb section of rice chromosome 6L encoding 21 predicted proteins with no homology to any known B transporters. The co-dominant PCR marker AWW5L7 co-segregated with Bo1 and was highly predictive of B tolerance status within a set of 94 Australian bread wheat cultivars and breeding lines. The markers and rice colinearity described here represent tools that will assist B tolerance breeding and the positional cloning of Bo1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   

17.
The rice nucleotide-binding site–leucine-rich repeat (NBS-LRR)-encoding resistance (R) gene Pi9 confers broad-spectrum resistance to the fungal pathogen Magnaporthe oryzae. The Pi9 locus comprises many NBS-LRR-like genes and is an ancient locus that is highly conserved in cultivated and wild rice species. To understand the genetic variation and molecular evolutionary mechanism of the Pi9 alleles in different rice species, we studied five AA genome Oryza species including two cultivated rice species (Oryza sativa and Oryza glaberrima) and three wild rice species (Oryza nivara, Oryza rufipogon, and Oryza barthii). A 2.9-kb fragment spanning the NBS-LRR core region of the Pi9 gene was amplified and sequenced from 40 accessions. Sequence comparison revealed that the Pi9 alleles had an intermediate-diversified nucleotide polymorphism among the AA genome Oryza species. Sequence variations were more abundant in the LRR region than in the NBS region, indicating that the LRR region has played a more important role for the evolution of the Pi9 alleles. Furthermore, positive selection was found to be the main force promoting the divergence of the Pi9 alleles, especially in the LRR region. Our results reveal the characteristics and evolutionary dynamics of the Pi9 alleles among the two cultivated and three wild rice species.  相似文献   

18.
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

19.
Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean (Glycine max). Three independent loci for SMV resistance have been identified in soybean germplasm. The use of genetic resistance is the most effective method of controlling this disease. Marker assisted selection (MAS) has become very important and useful in the effort of selecting genes for SMV resistance. Single nucleotide polymorphism (SNP), because of its abundance and high-throughput potential, is a powerful tool in genome mapping, association studies, diversity analysis, and tagging of important genes in plant genomics. In this study, a 10 SNPs plus one insert/deletion (InDel) multiplex assay was developed for SMV resistance: two SNPs were developed from the candidate gene 3gG2 at Rsv1 locus, two SNPs selected from the clone N11PF linked to Rsv1, one ‘BARC’ SNP screened from soybean chromosome 13 [linkage group (LG) F] near Rsv1, two ‘BARC’ SNPs from probe A519 linked to Rsv3, one ‘BARC’ SNP from chromosome 14 (LG B2) near Rsv3, and two ‘BARC’ SNPs from chromosome 2 (LG D1b) near Rsv4, plus one InDel marker from expressed sequence tag (EST) AW307114 linked to Rsv4. This 11 SNP/InDel multiplex assay showed polymorphism among 47 diverse soybean germplasm, indicating this assay can be used to investigate the mode of inheritance in a SMV resistant soybean line carrying Rsv1, Rsv3, and/or Rsv4 through a segregating population with phenotypic data, and to select a specific gene or pyramid two or three genes for SMV resistance through MAS in soybean breeding program. The presence of two SMV resistance genes (Rsv1 and Rsv3) in J05 soybean was confirmed by the SNP assay.  相似文献   

20.
Molecular breeding approaches are of growing importance to crop improvement. However, closely related cultivars generally used for crossing material lack sufficient known DNA polymorphisms due to their genetic relatedness. Next-generation sequencing allows the identification of a massive number of DNA polymorphisms such as single nucleotide polymorphisms (SNPs) and insertions-deletions (InDels) between highly homologous genomes. Using this technology, we performed whole-genome sequencing of a landrace of japonica rice, Omachi, which is used for sake brewing and is an important source for modern cultivars. A total of 229 million reads, each comprising 75 nucleotides of the Omachi genome, was generated with 45-fold coverage and uniquely mapped to 89.7% of the Nipponbare genome, a closely related cultivar. We identified 132,462 SNPs, 16,448 insertions and 19,318 deletions between the Omachi and Nipponbare genomes. An SNP array was designed to validate 731 selected SNPs, resulting in validation rates of 95 and 88% for the Omachi and Nipponbare genomes, respectively. Among the 577 SNPs validated in both genomes, 532 are entirely new SNP markers not previously reported between related rice cultivars. We also validated InDels on a part of chromosome 2 as DNA markers and successfully genotyped five japonica rice cultivars. Our results present the methodology and extensive data on SNPs and InDels available for whole-genome genotyping and marker-assisted breeding. The polymorphism information between Omachi and Nipponbare is available at NGRC_Rice_Omachi (http://www.nodai-genome.org/oryza_sativa_en.html).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号