首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant densities. We examined whether the growth of the early successional species Jacobaea vulgaris in soil collected from the field is related to the local variation in plant density of this species. In a grassland restoration site, we selected eight 8 m × 8 m plots, four with high and four with low densities of J. vulgaris plants. In 16 subplots in each plot we recorded the density and size of J. vulgaris, and characteristics of the vegetation and the soil chemistry. Soil collected from each subplot was used in a greenhouse pot-experiment to study the growth of J. vulgaris, both in pure field soil and in sterile soil inoculated with a small part of field soil.In the field, flowering J. vulgaris plants were taller, the percentage of rosette plants was higher and seed density was larger in High- than in Low-density plots. In the pot experiment, J. vulgaris had a negative plant–soil feedback, but biomass was also lower in soil collected from High- than from Low-density plots, although only when growing in inoculated soil. Regression analyses showed that J. vulgaris biomass of plants growing in pure soil was related to soil nutrients, but also to J. vulgaris density in the field.We conclude that in the field there is local variation in the negative plant–soil feedback of J. vulgaris and that this variation can be explained by the local density of J. vulgaris, but also by other factors such as nutrient availability.  相似文献   

2.
Wilschut  Rutger A.  van Kleunen  Mark 《Plant and Soil》2021,462(1-2):285-296
Plant and Soil - Drought events can alter the composition of plant and soil communities, and are becoming increasingly common and severe due to climate change. However, how droughts affect...  相似文献   

3.
We tested the hypothesis that N enrichment modifies plant-soil feedback relationships, resulting in changes to plant community composition. This was done in a two-phase glasshouse experiment. In the first phase, we grew eight annual plant species in monoculture at two levels of N addition. Plants were harvested at senescence and the effect of each species on a range of soil properties was measured. In the second phase, the eight plant species were grown in multi-species mixtures in the eight soils conditioned by the species in the first phase, at both levels of N addition. At senescence, species performance was measured as aboveground biomass. We found that in the first phase, plant species identity strongly influenced several soil properties, including microbial and protist biomass, soil moisture content and the availability of several soil nutrients. Species effects on the soil were mostly independent of N addition and several were strongly correlated with plant biomass. In the second phase, both the performance of individual species and overall community structure were influenced by the interacting effects of the species identity of the previous soil occupant and the rate of N addition. This indicates that N enrichment modified plant-soil feedback. The performance of two species correlated with differences in soil N availability that were generated by the species formerly occupying the soil. However, negative feedback (poorer performance on the soil of conspecifics relative to that of heterospecifics) was only observed for one species. In conclusion, we provide evidence that N enrichment modifies plant-soil feedback relationships and that these modifications may affect plant community composition. Field testing and further investigations into which mechanisms dominate feedback are required before we fully understand how and when feedback processes determine plant community responses to N enrichment.  相似文献   

4.
Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant–soil feedbacks. We tested how community context altered plant–soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant–soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant–soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant–soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.  相似文献   

5.
Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently shifted their range polewards. We tested whether the magnitude of plant–soil feedback is affected by ambient temperature and whether the effect of temperature differs between these groups of plant species. Six European/Eurasian plant species that recently colonized the Netherlands (non-natives), and six related species (natives) from the Netherlands were selected. Plant–soil feedback of these species was determined by comparing performance in conspecific and heterospecific soils. In order to test the effect of temperature on these plant–soil feedback interactions, the experiments were performed at two greenhouse temperatures of 20/15°C and 25/20°C, respectively. Inoculation with unconditioned soil had the same effect on natives and non-natives. However, the effect of conspecific conditioned soil was negative compared to heterospecific soil for natives, but was positive for non-natives. In both cases, plant–soil interactions were not affected by temperature. Therefore, we conclude that the temperature component of climate change does not affect the direction, or strength of plant–soil feedback, neither for native nor for non-native plant species. However, as the non-natives have a more positive soil feedback than natives, climate warming may introduce new plant species in temperate regions that have less soil-borne control of abundance.  相似文献   

6.
Field and bioassay studies with Jacobaea vulgaris (ragwort) have shown that plants grow poorly in soil originating from the rhizosphere of this species and that this can influence the dynamics of ragwort populations during secondary succession. In the present study we examined whether the negative effect of ragwort on conspecifics may be due to autotoxicity. First, we experimentally established that ragwort exerts negative plant–soil feedback. We subsequently examined the inhibitory effects on germination and seedling performance of different strengths of aqueous extracts made from shoot and root tissues of ragwort, and from soil in which ragwort had been growing. The effects of the extracts were tested for seedlings growing in sterilised soil or in glass beads with water. Finally, the inhibitory effect of entire root fragments on seedling performance was tested. We observed that performance of seedlings growing in glass beads was significantly reduced by the high and medium strength root and shoot extracts. Extracts made from soil did not differ significantly from the control, and seedlings growing in sterilised soil were also not affected by ragwort extracts. Seed germination was significantly reduced by the high strength shoot extract only. The root length of seedlings growing in water with root fragments was reduced significantly. We conclude that under laboratory conditions ragwort can be autotoxic and discuss the role that autotoxicity may play in influencing the dynamics of ragwort populations during secondary succession.  相似文献   

7.
Protists, functionally divided into consumers, phototrophs, and parasites act as integral components and vital regulators of microbiomes in soil–plant continuums. However, the drivers of community structure, assembly mechanisms, co-occurrence patterns, and the associations with human pathogens and different protistan trophic groups remain unknown. Here, we characterized the phyllosphere and soil protistan communities associated with three vegetables under different fertilization treatments (none and organic fertilization) at five growth stages. In this study, consumers were the most diverse soil protist group, had the role of inter-kingdom connector, and were the primary biomarker for rhizosphere soils which were subjected to decreasing deterministic processes during plant growth. In contrast, phototrophs had the greatest niche breadth and formed soil protistan hubs, and were the primary biomarkers for both bulk soils and the phyllosphere. Parasites had minimal input to microbial co-occurrence networks. Organic fertilization increased the relative abundance (RA) of pathogenic protists and the number of pathogen–consumer connections in rhizosphere soils but decreased protistan richness and the number of internal protistan links. This study advances our understanding of the ecological roles and potential links between human pathogens and protistan trophic groups associated with soil–plant continuums, which is fundamental to the regulation of soil–plant microbiomes and maintenance of environmental and human health.  相似文献   

8.
Plant–soil interactions directly affect plant success in terms of establishment, survival, growth and reproduction. Negative plant–soil feedback on such traits may therefore reduce the density and abundance of plants of a given species at a given site. Furthermore, if conspecific feedback varies among population sites, it could help explain geographic variation in plant population size. We tested for among-site variation in conspecific plant–soil feedback in a greenhouse experiment using seeds and soils from 8 natural populations of Lobelia siphilitica hosting 30–330 plants. The first cohort of seeds was grown on soil collected from each native site, while the second cohort was grown on the soil conditioned by the first. Our goal was to distinguish site-specific effects mediated by biotic and/or abiotic soil properties from those inherent in seed sources. Cohort 1 plants grown from seeds produced in small populations performed better in terms of germination, growth, and survival compared to plants produced in large populations. Plant performance decreased substantially between cohorts, indicating strong negative feedback. Most importantly, the strength of negative feedback scaled linearly (i.e., was less negative) with increasing size of the native plant population, particularly for germination and survival, and was better explained by soil- rather than seed-source effects. Even with a small number of sites, our results suggest that the potential for negative plant–soil feedback varies among populations of L. siphilitica, and that small populations were more susceptible to negative feedback. Conspecific plant–soil feedback may contribute to plant population size variation within a species’ native range.  相似文献   

9.
We investigated the nitrogen (N) dynamics of an alpine–nival ecotone on Mt. Schrankogel, Tyrol, Austria, in relation to temperature. Natural abundance of 15N was used as a tool to elucidate differences in N cycling along an altitudinal transect ranging from 2,906 to 3,079 m, corresponding to a gradient in mean annual temperature of 2.4 °C. The amount of total soil N, of plant available N and soil C/N ratio decreased significantly with increasing altitude, whereas soil pH increased. Soil δ 15N decreased with increasing altitude from +2.2 to −2.1‰ and δ 15N of plant tissues (roots and leaves) decreased from −3.7 to −5.5‰. The large shift in soil δ 15N of 4.3‰ from the lowest to the highest site suggested substantial differences in N cycling in alpine and nival ecosystems in the alpine nival ecotone investigated. We concluded that N cycling at the alpine–nival ecotone is likely to be controlled by various factors: temperature, soil age and development, atmospheric N deposition and plant competition. Our results furthermore demonstrate that the alpine–nival ecotone may serve as a sensitive indicator of global change.  相似文献   

10.
To detect plant specialization to pollinator insects and to further examine the pollination syndrome hypotheses, flowering angiosperms and insect visitors were recorded in a northern maritime grassland community. Associations between plant species and insect groups were analyzed using binomial tests based on census data obtained from two sites over 3years. Preference to an insect group by a plant species was expressed as a significant deviation of the actual proportion (i.e. the proportion of the number of flower visits by the insect group to the plant species in the total number of visits to the plant species) of the expected proportion (i.e. the proportion of the number of visits by the insect group in the total visits during its flowering period). Preference to a plant species by an insect group was similarly expressed using the number of flowers of the plant species visited by the insect group. Most significant preferences varied temporally or spatially. Variability in the preferences is suggested to have resulted from temporal and spatial variations in the abundance and species composition of both flowers and insects. However, in species showing variable preferences, significant specialization in the pollinator insect group (i.e. relatively constant, mutual preferences) were demonstrated for seven and five plant species at the two study sites, respectively. Most specializations were found in associations with bumblebees. Bumblebee specialists were significantly well represented in the flower shape types gullet and flag and the flower color types violet, which supports the pollination syndrome theory.  相似文献   

11.
Global climate models predict that the frequency and intensity of precipitation events will increase in many regions across the world. However, the biosphere-climate feedback to elevated precipitation (eP) remains elusive. Here, we report a study on one of the longest field experiments assessing the effects of eP, alone or in combination with other climate change drivers such as elevated CO2 (eCO2), warming and nitrogen deposition. Soil total carbon (C) decreased after a decade of eP treatment, while plant root production decreased after 2 years. To explain this asynchrony, we found that the relative abundances of fungal genes associated with chitin and protein degradation increased and were positively correlated with bacteriophage genes, suggesting a potential viral shunt in C degradation. In addition, eP increased the relative abundances of microbial stress tolerance genes, which are essential for coping with environmental stressors. Microbial responses to eP were phylogenetically conserved. The effects of eP on soil total C, root production, and microbes were interactively affected by eCO2. Collectively, we demonstrate that long-term eP induces soil C loss, owing to changes in microbial community composition, functional traits, root production, and soil moisture. Our study unveils an important, previously unknown biosphere-climate feedback in Mediterranean-type water-limited ecosystems, namely how eP induces soil C loss via microbe-plant–soil interplay.  相似文献   

12.
AimsGeographic patterns of the intensity of plant herbivory in relation to climate factors have garnered little general support and appear to be species specific. However, plant–herbivore interactions are also driven by resource availability, such as soil nutrient content, and it remains unclear whether broad-scale variation in soil factors is reflected in herbivore consumption rates across species’ ranges. Additionally, we know little of how intraspecific variation in tissue quality associates with edaphic and climatic factors, and how this variation controls herbivore consumption. The resource availability hypothesis (RAH) predicts that plant individuals growing in low-resource environments will have lower leaf nutritional quality and more constitutive defenses, which will result in lower rates of leaf consumption.  相似文献   

13.
H.-B. Shao  L.-Y. Chu 《Plant biosystems》2013,147(4):1163-1165
Plants and soil are the base for sustainably surviving human beings on the globe as the role of materials, energy, resources and environment (Shao & Chu 2008; Shao et al. 2008, 2009, 2010, 2012a,b; Liu & Shao, 2010; Ruan et al. 2010; Xu et al. 2010, 2012; Shao 2012; Huang et al. 2013). This topic has been extensively investigated for 100 years with more achievements in many sectors and practical significance in conducting high-efficient agriculture and eco-environmental construction. The plant–soil interaction is the core issue of this topic, which has been given much attention for the past 30 years (Wu et al. 2007, 2010; Zhang et al. 2011, 2013; Xu et al. 2012, 2013).  相似文献   

14.
Resource competition theory suggests that the nature of diversity–resource–invasibility interactions will vary along fertility gradients, concurrent with changes in the relative availability of limiting above- versus below-ground resources. Experimental support for this contingency is lacking. Here, we manipulated resident diversity, baseline fertility, and the availabilities of light and soil nitrogen in grassland communities invaded by two functionally distinct non-native plant species (Lolium arundinaceum and Melilotus alba). We tested the hypotheses that increased resident diversity reduces community invasibility and dampens the effects of light and soil nitrogen pulses, and that the relative effects of light versus soil nitrogen additions on diversity–invasibility relationships depend on the baseline fertility of the study system. Our results reveal an overall weak negative effect of resident diversity on Lolium performance, but in contrast to our expectations, this diversity effect did not vary with light or soil nitrogen additions or with baseline fertility. However, the relative effects of above- versus below-ground resource additions on invader performance varied with baseline fertility as expected: Lolium responded most strongly to soil nitrogen additions in low-fertility mesocosms and most strongly to increased light availability in high-fertility mesocosms. In contrast to Lolium, nitrogen-fixing Melilotus was overall less responsive to diversity and resource manipulations. Together, these patterns do not lend support for the dependence of diversity–resource–invasibility relationships on either baseline fertility or invasive species identity, but they do highlight the dominant role of resources over diversity in determining invader performance, as well as the manner in which fertility alters the relative importance of above- versus below-ground resource pulses in promoting invasions.  相似文献   

15.
亚热带森林土壤真菌类群对马尾松和石栎物种共存的驱动机制 植物-土壤反馈(plant–soil feedback, PSF)是促进森林生态系统物种共存和多样性维持的关键机制之一。大量证据表明大树周围具有物种特异性的土壤病原菌对其同种幼苗的存活和生长具有明显的抑制作用,而对于异种幼苗更新的影响则相对较弱。然而,时至今日我们仍然未能全面解读PSF这一影响 的内在生物学机制。本研究通过对我国亚热带常绿落叶阔叶林常见树种——马尾松(Pinus massoniana)和石栎(Lithocarpus glaber)开展交叉接种盆栽试验,探讨PSF过程对目标树种共存的作用机制。盆栽实验所用接种土壤取自天然林地两种目标树种林冠下的表层土壤,分别检测来源于同种大树和异种大树的接种土壤对马尾松和石栎幼苗存活和生长的影响。同时,通过杀菌处理评估不同土壤真菌功能类群,尤其是土壤病原真菌类群在PSF过程中的相对重要性。研究结果表明,石栎幼苗在接种异种大树土壤的情况下生长更好,而马尾松幼苗并未受到接种土壤来源的影响。然而,进行杀菌处理之后,在接种同种大树土壤的盆栽中石栎幼苗的长势更优于接种异种土壤的幼苗,说明土壤真菌类群是调控其PSF过程的关键环节。该研究验证了土壤病原真菌和菌根真菌类群是PSF过程重要的驱动因素,而PSF过程通过调控石栎幼苗的存活和生长,从而促进石栎树种与马尾松树种在群落中的共存。  相似文献   

16.
Interactions between plants and soil microbes are important for plant growth and resistance. Through plant–soil-feedbacks, growth of a plant is influenced by the previous plant that was growing in the same soil. We performed a plant–soil feedback study with 37 grass, forb and legume species, to condition the soil and then tested the effects of plant-induced changes in soil microbiomes on the growth of the commercially important cut-flower Chrysanthemum in presence and absence of a pathogen. We analysed the fungal and bacterial communities in these soils using next-generation sequencing and examined their relationship with plant growth in inoculated soils with or without the root pathogen, Pythium ultimum. We show that a large part of the soil microbiome is plant species-specific while a smaller part is conserved at the plant family level. We further identified clusters of plant species creating plant growth promoting microbiomes that suppress concomitantly plant pathogens. Especially soil inocula with higher relative abundances of arbuscular mycorrhizal fungi caused positive effects on the Chrysanthemum growth when exposed to the pathogen. We conclude that plants differ greatly in how they influence the soil microbiome and that plant growth and protection against pathogens is associated with a complex soil microbial community.  相似文献   

17.
Food and water resources are limiting factors for animals in desert ecosystems. Fleshy fruits are a rare water source in deserts and when available they tend to attract a wide variety of organisms. Here we show that two congeneric rodent species, Acomys cahirinus and A. russatus, employ different fruit eating strategies that result in either dispersal or predation of the small seeds of the desert plant Ochradenus baccatus. The nocturnal A. cahirinus leaves intact seeds when consuming O. baccatus fruits and thus, acts mainly as a seed disperser; whereas the diurnal A. russatus consumes the whole fruit and digests the seeds and thus, acts mainly as a seed predator. Acomys russatus is subjected to the toxic products of the glucosinolates-myrosinase system found in O. baccatus fruits. Acomys cahirinus avoids the toxic compounds by consuming the pulp only, which contains glucosinolates but not the seeds that contain the enzyme that activates them. We suggest that the behavioral responses exhibited by A. russatus are the result of physiological adaptations to whole fruit consumption that are absent in A. cahirinus. Our results shed new light on the ecological divergence of the two congeneric species.  相似文献   

18.
The study of interaction networks between plants and pollinators allows us to explore interaction patterns at the community level, detect changes in visit frequency and evaluate the nestedness of the networks. The latter allows rare plant species to be visited by more abundant species of pollinators, potentially allowing community diversity to be maintained, and this approach makes it possible to discern the rewiring (changes in connections) of species when their preferred resource is not available. In this study, the topology, species identity and rewiring were compared between two contrasting sites, one within a conservation area and the other subjected to continuous disturbance. The networks of both sites were significantly nested and shared a high number of common species of both plants and pollinators. However, the sites differed notably in the number of exclusive interactions, suggesting a high percentage of interaction rewiring. The introduced bee species, Apis mellifera, was the most frequent species at both sites and also the most connected in terms of the number of its interactions. This is explained by its generalist foraging characteristics that allow it to form part of the networks’ core group. In general, our results underscore the importance of knowing the identity of the participating species when studying networks, and how connections change between them, as well as the potential effect of habitat destruction and the role of invasive species in the rearrangement of the interactions; all factors that can exert an influence on the functioning of plant–pollinator networks.  相似文献   

19.
The fragmentation of natural habitat is considered to be a major threat to biodiversity. Decreasing habitat quality and quantity caused by fragmentation may lead to a disruption of plant–pollinator interactions and to a reduction in sexual reproduction in plant species. We conducted a 6-year field experiment to investigate the effects of small-scale fragmentation on plant–pollinator interactions and genetic diversity in the self-compatible Betonica officinalis. We examined the abundance and composition of pollinators, the foraging behaviour of bumblebees and the performance, outcrossing rate and genetic diversity of B. officinalis after 2 and 6 years in experimentally fragmented nutrient-poor, calcareous grassland in the northern Swiss Jura mountains. Fragments of different size (2.25 and 20.25 m2) were isolated by a 5-m-wide strip of frequently mown vegetation. Control plots of corresponding size were situated in adjacent undisturbed grassland. Experimental grassland fragmentation altered the composition of B. officinalis pollinators and reduced their flower visitation rate. Furthermore, the foraging behaviour of bumblebees was changed in the fragments. After 6 years of fragmentation seed weight was higher in fragments than in control plots. However, the densities of B. officinalis rosettes and inflorescences, plant height and inflorescence length were not affected by fragmentation. The outcrossing frequency of B. officinalis growing in fragments was reduced by 15% after 2 years and by 33% after 6 years of experimental fragmentation. This resulted in a significant reduction of the genetic diversity in seedlings emerging in fragments after 6 years. Our study shows that small-scale habitat fragmentation can disturb the interaction between B. officinalis and pollinators resulting in a reduced outcrossing frequency and genetic diversity in plants growing in fragments. However, the response to fragmentation was considerably delayed. This finding strengthens the claim for long-term field experiments with proper replications and controls to assess delayed effects of habitat fragmentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号