首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Germ cell transplantation (GCT) is a promising assisted reproductive technology for the conservation and propagation of endangered and valuable genetic resources. In teleost fish, GCT in adult gonads has been achieved only in male recipients, limiting greatly the usefulness of this technique in situations where both sexes need equal and timely attention for conservation and/or propagation. Here we describe a simplified GCT approach that ultimately leads to production of donor-derived eggs and sperm in considerably short time. Donor germ cells isolated from young pejerrey Odontesthes bonariensis (Atherinopsidae) were transplanted non-surgically through the genital papilla into the sexually mature gonads of Patagonian pejerrey O. hatcheri recipients whose gonads have been depleted of endogenous GCs by heat (26°C) and chemical treatment (four doses of Busulfan at 30 mg/kg and 40 mg/kg for females and males, respectively). Transplanted spermatogonial and oogonial cells were able to recolonize the recipients'' gonads and produce functional donor origin eggs and sperm within 7 months from the GCT. We confirmed the presence of donor-derived gametes by PCR in 17% and 5% of the surrogate O. hatcheri fathers and mothers, respectively. The crosses between surrogate fathers and O. bonariensis mothers yielded 12.6–39.7% pure O. bonariensis and that between a surrogate mother and an O. bonariensis father yielded 52.2% pure O. bonariensis offspring. Our findings confirm that transplantation of germ cells into sexually competent adult fish by non-surgical methods allows the production of functional donor-derived eggs and sperm in a considerably short time. The methods described here could play a vital role in conservation and rapid propagation of endangered fish genetic resources.  相似文献   

2.
Germ cell transplantation offers promising applications in finfish aquaculture and the preservation of endangered species. Here, we describe an intraperitoneal spermatogonia transplantation procedure in the Nile tilapia Oreochromis niloticus. Through histological analysis of early gonad development, we first determined the best suitable stage at which exogenous germ cells should be transplanted into the recipients. For the transplantation procedure, donor testes from a transgenic Nile tilapia strain carrying the medaka β-actin/enhanced green fluorescent protein (EGFP) gene were subjected to enzymatic dissociation. These testicular cells were then stained with PKH26 and microinjected into the peritoneal cavity of the recipient fish. To confirm colonization of the donor-derived germ cells, the recipient gonads were examined by fluorescent and confocal microscopy. PKH26-labeled cells exhibiting typical spermatogonial morphology were incorporated into the recipient gonads and were not rejected within 22 days posttransplantation. Long-term survival of transgenic donor-derived germ cells was then verified in the gonads of 5-month-old recipients and in the milt and vitelogenic oocytes of 1-year-old recipients, by means of PCR using EGFP-specific primers. EGFP-positive milt from adult male recipients was used to fertilize non-transgenic oocytes and produced transgenic offspring expressing the donor-derived phenotype. These results imply that long-term survival, proliferation, and differentiation of the donor-derived spermatogonia into vitelogenic oocytes and functional spermatozoa are all possible. Upon further improvements in the transplantation efficiency, this intraperitoneal transplantation system could become a valuable tool in the conservation of genetic resources for cichlid species.  相似文献   

3.
4.
The Patagonian silverside Odontesthes hatcheri is a native fish restricted to streams and lakes of Patagonia (Argentina and Chile). Stocking programs to enhance recreational fisheries in man-made reservoirs have introduced a nonnative, closely-related species (the pejerrey O. bonariensis) in Patagonia almost a century ago, and yet little is known about the invasiveness of this species. To evaluate the impact of these introductions we analyze genetic data (microsatellite markers and mitochondrial DNA) to quantify the incidence of hybridization between these two species and assess potential effects on native population structure. Phylogeographic analyses reveal weak geographic differentiation among populations of O. hatcheri, in agreement with previous studies for other freshwater fishes in Patagonia strongly influenced by Quaternary glaciations and hydrographic basin changes since the last glaciation. However, many populations have unique genetic pools. In several areas, introductions resulted in extensive hybridization, with high frequencies of F2 and backcrossed hybrids in natural populations, and in some cases O. bonariensis has completely displaced the native populations. The negative impact of these introductions on native populations is correlated to temperature, a critical parameter in the face of global warming, suggesting that invasiveness of O. bonariensis may increase in the future. Our results advise against continuing stocking programs to preserve the integrity of natural populations of the Patagonian silverside.  相似文献   

5.
6.
Although the yellowtail (Seriola quinqueradiata) is the fish most commonly farmed in Japan, breeding of this species has not yet started. This is primarily due to the lack of sufficiently sophisticated methods for manipulating gametogenesis, which makes it difficult to collect gametes from specific dams and sires. If it were possible to produce large numbers of surrogate fish by transplanting germ cells isolated from donor individuals harboring desirable genetic traits, then the probability of acquiring gametes carrying the donor-derived haplotype would increase, and breeding programs involving this species might increase as a result. As a first step, we established a method for the allogeneic transplantation of yellowtail spermatogonia and the production of donor-derived offspring. Donor cells were collected from immature (10-month-old) yellowtail males with testes containing abundant type A spermatogonia, labeled with PKH26 fluorescent dye, and transferred into the peritoneal cavities of 8-day-old larvae. Fluorescence observation at 28 days post-transplantation revealed that PKH26-labeled cells were incorporated into recipients' gonads. To assess whether donor-derived spermatogonia could differentiate into functional gametes in the allogeneic recipient gonads, gametes collected from nine male and four female adult recipients were fertilized with wild-type eggs and milt. Analysis of microsatellite DNA markers confirmed that some of the first filial (F(1)) offspring were derived from donor fish, with the average contribution of donor-derived F(1) offspring being 66% and the maximum reaching 99%. These findings confirmed that our method was effective for transplanting yellowtail spermatogonia into allogeneic larvae to produce donor-derived offspring.  相似文献   

7.
Zebrafish spermatogonial cell cultures were established from Tg(piwil1:neo);Tg(piwil1:DsRed) transgenic fish using a zebrafish ovarian feeder cell line (OFC3) that was engineered to express zebrafish Lif, Fgf2 and Gdnf. Primary cultures, initiated from testes, were treated with G418 to eliminate the somatic cells and select for the piwil1:neo expressing spermatogonia. Addition of dorsomorphin, a Bmp type I receptor inhibitor, prolonged spermatogonial stem cell (SSC) survival in culture and enhanced germline transmission of the SSCs following transplantation into recipient larvae. In contrast, dorsomorphin inhibited the growth and survival of zebrafish female germline stem cells (FGSCs) in culture. In the presence of dorsomorphin, the spermatogonia continued to express the germ-cell markers dazl, dnd, nanos3, vasa and piwil1 and the spermatogonial markers plzf and sox17 for at least six weeks in culture. Transplantation experiments revealed that 6 week-old spermatogonial cell cultures maintained in the presence of dorsomorphin were able to successfully colonize the gonad in 18% of recipient larvae and produce functional gametes in the resulting adult chimeric fish. Germline transmission was not successful when the spermatogonia were cultured 6 weeks in the absence of dorsomorphin before transplantation. The results indicate that Bmp signaling is detrimental to SSCs but required for the survival of zebrafish FGSCs in culture. Manipulation of Bmp signaling could provide a strategy to optimize culture conditions of germline stem cells from other species.  相似文献   

8.
As a promising biotechnology, fish germ cell transplantation shows potentials in conservation germplasm resource, propagation of elite species, and generation of transgenic individuals. In this study, we successfully transplanted the Japanese flounder (P. olivaceus), summer flounder (P. dentatus), and turbot (S. maximus) spermatogonia into triploid Japanese flounder larvae, and achieved high transplantation efficiency of 100%, 75-95% and 33-50% by fluorescence tracking and molecular analysis, respectively. Eventually, donor-derived spermatozoa produced offspring by artificial insemination. We only found male and intersex chimeras in inter-family transplantations, while male and female chimeras in both intra-species and intra-genus transplantations. Moreover, the intersex chimeras could mature and produce turbot functional spermatozoa. We firstly realized inter-family transplantation in marine fish species. These results demonstrated successful spermatogonial stem cells transplantation within Pleuronectiformes, suggesting the germ cells migration, incorporation and maturation within order were conserved across a wide range of teleost species.  相似文献   

9.
Transplantation of spermatogonial stem cells into syngeneic or immunosuppressed recipient mice or rats can result in donor-derived spermatogenesis and fertility. Recently, this approach has been employed to introduce a transgene into the male germline. Germ-cell transplantation in species other than laboratory rodents, if successful, holds great promise as an alternative to the inefficient methods currently available to generate transgenic farm animals that can produce therapeutic proteins in their milk or provide organs for transplantation to humans. To explore whether germ-cell transplantation could result in donor-derived spermatogenesis and fertility in immunocompetent recipient goats, testis cells were transplanted from transgenic donor goats carrying a human alpha-1 antitrypsin expression construct to the testes of sexually immature wild-type recipient goats. After puberty, sperm carrying the donor-derived transgene were detected in the ejaculates of two out of five recipients. Mating of one recipient resulted in 15 offspring, one of which was transgenic for the donor-derived transgene. This is the first report of donor cell-derived sperm production and transmission of the donor haplotype to the next generation after germ-cell transplantation in a nonrodent species. Furthermore, these results indicate that successful germ-cell transplantation is feasible between immunocompetent, unrelated animals. In the future, transplantation of genetically modified germ cells may provide a more efficient alternative for production of transgenic domestic animals.  相似文献   

10.
Synopsis The present study investigated the effects of water temperature (18, 21, and 25 °C) on the histological process of gonadal sex differentiation of two commercially important atherinid fishes from South America, Odontesthes argentinensis (sea pejerrey) and Patagonina hatcheri (Patagonian freshwater pejerrey). In both species, female gonadal sex differentiation began with the formation of lateral stromal cell outgrowths and the appearance of meiotic oocytes. The male gonads remained quiescent for about twice as long as the female gonads, with differentiation becoming evident by the formation of the main sperm duct and of cysts of germ cells at the periphery of the gonads. Meiosis in males occurred relatively long after somatic differentiation of the testis. The ovaries of O. argentinensis differentiated at 28 days (20.3 mm) at 25 °C, 42 days (24.0 mm) at 21 °C, and 56 days (23.8 mm) at 18 °C. In the males, differentiation was observed at 98 days at 25 and 21 °C (39.4 mm and 40.4 mm, respectively), but at 112 days under 18 °C (40.7 mm). In P. hatcheri, differentiation of females occurred at 21 days (17.8 mm) at 25 °C, 28 days (20.8 mm) at 21 °C, and 35 days (23.2 mm) at 18 °C. Male differentiation became evident at 56 days under 25 and 21 °C (30.8 and 32.7 mm, respectively), and at 70 days (37.7 mm) at 18 °C. The sex-ratios of O. argentinensis reared at 18 or 21 °C were female-biased whereas those at 25 °C were not; groups reared at 18 °C had significantly more females than groups from the same progeny reared at 25 °C. In contrast, the sex-ratios in all groups of P. hatcheri did not differ significantly from 1:1 and no significant differences were found between groups of the same progeny reared at different temperatures. These results suggest the occurrence of thermolabile sex determination (TSD) in O. argentinensis whereas in P. hatcheri gonadal sex appears to be strongly genetically determined.  相似文献   

11.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

12.
Despite remarkable advances in assisted reproductive capabilities ∼4% of all couples remain involuntarily infertile. In almost half of these cases, a lack of conception can in some measure be attributed to the male partner, wherein de novo Y-chromosomal deletions of sperm-specific Deleted-in-Azoospermia (DAZ) genes are particularly prevalent. In the current study, long-term cultures of rat spermatogonial stem cells were evaluated after cryo-storage for their potential to restore fertility to rats deficient in the DAZ-like (DAZL) gene. Detailed histological analysis of DAZL-deficient rat testes revealed an apparently intact spermatogonial stem cell compartment, but clear failure to produce mature haploid gametes resulting in infertility. After proliferating >1 million-fold in cell number during culture post-thaw, as few as 50,000 donor spermatogonia transplanted into only a single testis/recipient effectively restored fecundity to DAZL-deficient rats, yielding 100% germline transmission to progeny by natural mating. Based on these results, the potency and efficacy of this donor stem cell line for restoring fertility to azoospermic rodents is currently unprecedented. Prospectively, similar successes in humans could be directly linked to the feasibility of obtaining enough fully functional spermatogonial stem cells from minimal testis biopsies to be therapeutically effective. Thus, regeneration of sperm production in this sterile recipient provides an advanced pre-clinical model for optimizing the efficacy of stem cell therapies to cure a paradoxically increasing number of azoospermic men. This includes males that are rendered infertile by cancer therapies, specific types of endocrine or developmental defects, and germline-specific de novo mutations; all of whom may harbor healthy sources of their own spermatogonial stem cells for treatment.  相似文献   

13.
A growing number of fish species are endangered due to human activities. A short- or long-time preservation of gametes could conserve genetic resources of threatened fish species. The aim of this study was to evaluate a hypothermic condition for short-term preservation of spermatogonia and oogonia cells isolated from immature transgenic rainbow trout, Oncorhynchus mykiss, and to determine the maximum time point for further transplantation. Viability rate of germ cells was investigated after isolation and during storage at 4 °C up to 24 h. Dulbecco's modification of Eagle's medium supplemented with Hepes fetal bovine serum and l-glutamine was used as hypothermic storage media. The results showed that while viability decreased following 24 h storage, the remaining viable cells did not vary morphologically as well as GFP intensity retained similar to those observed in freshly isolated cells. The hypothermal storage study indicated that culture medium is suitable for preserving germ cells in the short periods of time. Simplicity, easily available culture media and low cost provide new insight into hypothermic conditions for preserving and transporting of germ cells for next applied and basic studies.  相似文献   

14.
Initiation of the first wave of spermatogenesis in the neonatal mouse testis is characterized by the differentiation of a transient population of germ cells called gonocytes found in the center of the seminiferous tubule. The fate of gonocytes depends upon these cells resuming mitosis and developing the capacity to migrate from the center of the seminiferous tubule to the basement membrane. This process begins approximately Day 3 postpartum in the mouse, and by Day 6 postpartum differentiated type A spermatogonia first appear. It is essential for continual spermatogenesis in adults that some gonocytes differentiate into spermatogonial stem cells, which give rise to all differentiating germ cells in the testis, during this neonatal period. The presence of spermatogonial stem cells in a population of cells can be assessed with the use of the spermatogonial stem cell transplantation technique. Using this assay, we found that germ cells from the testis of Day 0-3 mouse pups can colonize recipient testes but do not proliferate and establish donor-derived spermatogenesis. However, germ cells from testes of Day 4-5 postpartum mice colonize recipient testes and generate large areas of donor-derived spermatogenesis. Likewise, germ cells from Day 10, 12, and 28 postpartum animals and adult animals colonize and establish donor-derived spermatogenesis, but a dramatic reduction in the number of colonies and the extent of colonization occurs from germ cell donors Days 12-28 postpartum that continues in adult donors. These results suggest spermatogonial stem cells are not present or not capable of initiating donor-derived spermatogenesis until Days 3-4 postpartum. The analysis of germ cell development during this time frame of development and spermatogonial stem cell transplantation provides a unique system to investigate the establishment of the stem cell niche within the mouse testis.  相似文献   

15.
Paris MC  Snow M  Cox SL  Shaw JM 《Theriogenology》2004,61(2-3):277-291
The transplantation of reproductive organs, including ovaries and ovarian tissue, was pioneered over 100 years ago. In the 1960s, ovarian grafting was used as a tool to investigate ovarian function, but with the recent development of more effective cryopreservation protocols for ovarian tissue, germline preservation and propagation have now become realistic goals. This review describes progress in ovarian banking and ovarian tissue transplantation, with emphasis on how fresh and frozen ovarian tissue can be used in assisted reproduction for both humans and animals. This paper focuses most closely on the potential value of xenotransplantation, the transplantation of gonads from one species to another, to conserve rare and endangered species. Specific attention is drawn to the use of xenotransplantation as a strategy for generating viable gametes that can be used to produce live fertile offspring. Other upcoming xenogeneic technologies that may be of potential significance in animal conservation, such as transplantation of whole ovaries or isolated growing follicles, and even male germ cells, are discussed.  相似文献   

16.
17.
Sexually reproducing animals segregate their germline from their soma. In addition to gamete-producing gonads, planarian and parasitic flatworm reproduction relies on yolk cell–generating accessory reproductive organs (vitellaria) supporting development of yolkless oocytes. Despite the importance of vitellaria for flatworm reproduction (and parasite transmission), little is known about this unique evolutionary innovation. Here, we examine reproductive system development in the planarian Schmidtea mediterranea, in which pluripotent stem cells generate both somatic and germ cell lineages. We show that a homolog of the pluripotency factor Klf4 is expressed in primordial germ cells (PGCs), presumptive germline stem cells (GSCs), and yolk cell progenitors. Knockdown of this klf4-like (klf4l) gene results in animals that fail to specify or maintain germ cells; surprisingly, they also fail to maintain yolk cells. We find that yolk cells display germ cell–like attributes and that vitellaria are structurally analogous to gonads. In addition to identifying a new proliferative cell population in planarians (yolk cell progenitors) and defining its niche, our work provides evidence supporting the hypothesis that flatworm germ cells and yolk cells share a common evolutionary origin.  相似文献   

18.
Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro.  相似文献   

19.
20.
Testicular germ cell transplantation into the seminiferous tubules is at present the only way to induce spermatogenesis from a given source of spermatogonial stem cells. Here we show an alternative method that harnesses the self-organizing ability of testicular somatic cells. The testicular cells of embryonic or neonatal mice or rats and of newborn pigs were dissociated into single cells. Each of them reorganized into a tubular structure following implantation into the subcutis of immunodeficient mice. When mouse germline stem (GS) cells derived from spermatogonial stem cells and expanded in culture were intermingled with testicular cells of rodents, they were integrated in the reconstituted tubules and differentiated beyond meiosis into spermatids. Normal offspring were produced by the microinjection of those spermatids into oocytes. This method could be applicable to various mammalian species and useful for producing functional gametes from GS cells in a xenoectopic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号