首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand binding to proteins often is accompanied by conformational transitions. Here, we describe a competition assay based on single molecule Förster resonance energy transfer (smFRET) to investigate the ligand-induced conformational changes of the dengue virus (DENV) NS2B-NS3 protease, which can adopt at least two different conformations. First, a competitive ligand was used to stabilize the closed conformation of the protease. Subsequent addition of the allosteric inhibitor reduced the fraction of the closed conformation and simultaneously increased the fraction of the open conformation, demonstrating that the allosteric inhibitor stabilizes the open conformation. In addition, the proportions of open and closed conformations at different concentrations of the allosteric inhibitor were used to determine its binding affinity to the protease. The KD value observed is in accordance with the IC50 determined in the fluorometric assay. Our novel approach appears to be a valuable tool to study conformational transitions of other proteases and enzymes.  相似文献   

2.
Choi B  Zocchi G 《Biophysical journal》2007,92(5):1651-1658
Since the introduction of the induced-fit theory by D. E. Koshland Jr., it has been established that conformational motion invariably accompanies the execution of protein function. The catalytic activity of kinases, specifically, is associated with large conformational changes (∼1 nm amplitude). In the case of guanylate kinase, upon substrate binding, the LID and nucleotide-monophosphate-binding domains are brought together and toward the CORE with large concerted movements about the α3 (helix 3) axis. However, whether the change in conformation mostly affects the catalytic rate or mostly increases binding affinities for one or the other substrate is unclear. We investigate this question using a nanotechnology approach based on mechanical stress. Using an “allosteric spring probe”, we bias conformational states in favor of the “open” (substrate-free) conformation of the enzyme; the result is that the binding constant for the substrate guanosine monophosphate (GMP) is reduced by up to a factor of 10, whereas the binding constant for adenosine triphosphate (ATP) and the catalytic rate are essentially unaffected. The results show that the GMP-induced conformational change, which promotes catalysis, does not promote ATP binding, consistent with previous mutagenesis studies. Furthermore, they show that this conformational change is of the induced-fit type with respect to GMP binding (but not ATP binding). We elaborate on this point by proposing a quantitative criterion for the classification of conformational changes with respect to the induced-fit theory. More generally, these results show that the allosteric spring probe can be used to affect enzymatic activity in a continuously controlled manner, and also to affect specific steps of the reaction mechanism while leaving others unaffected. It is presumed that this will enable informative comparisons with the results of future molecular dynamics or statistical mechanics computations.  相似文献   

3.
Several molecular dynamics simulations of S. aureus Tyrosyl-tRNA synthetase (TyrRS) in its free form and complexed with Tyr, ATP, tyrosyl adenylate and inhibitor respectively have been carried out to investigate the ligand-linked conformational stability changes associated with its catalytic cycle. The results show that unliganded S. aureus TyrRS samples a more relaxed conformational space than substrate-bound TyrRS. There are three high flexibility regions encompassing residues 114–118, 128–133, and 226–238 respectively. The region which includes the KMSKS motif (KFGKS in S. aureus TyrRS) shows the highest difference in fluctuations. Hydrogen bond network formed by Tyr, ATP, tyrosyl adenylate and inhibitor with S. aureus TyrRS is discussed. Our simulations suggest the induced-fit conformational changes of the KMSKS loop as follows: the KMSKS loop of substrate-free S. aureus TyrRS adopts an open conformation. The tyrosine binds in the pocket with the KMSKS loop balancing between semi-open and open forms. The ATP binding induces the KMSKS loop to the open form. After the Tyr-AMP is formed, the first two residues of KMSKS loop twists in an anticlockwise direction and drives the loop in a conformation similar to the closed one, while those of the last three GKS residues adopt a conformation between semi-open and open conformation. This conformational change may probably be involved in the initial tRNA binding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein’s dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.  相似文献   

5.
The serine-histidine-aspartate triad is well known for its covalent, nucleophilic catalysis in a diverse array of enzymatic transformations. Here we show that its nucleophilicity is shielded and its catalytic role is limited to being a specific general base by an open-closed conformational change in the catalysis of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (or MenH), a typical α/β-hydrolase fold enzyme in the vitamin K biosynthetic pathway. This enzyme is found to adopt an open conformation without a functional triad in its ligand-free form and a closed conformation with a fully functional catalytic triad in the presence of its reaction product. The open-to-closed conformational transition involves movement of half of the α-helical cap domain, which causes extensive structural changes in the α/β-domain and forces the side chain of the triad histidine to adopt an energetically disfavored gauche conformation to form the functional triad. NMR analysis shows that the inactive open conformation without a triad prevails in ligand-free solution and is converted to the closed conformation with a properly formed triad by the reaction product. Mutation of the residues crucial to this open-closed transition either greatly decreases or completely eliminates the enzyme activity, supporting an important catalytic role for the structural change. These findings suggest that the open-closed conformational change tightly couples formation of the catalytic triad to substrate binding to enhance the substrate specificities and simultaneously shield the nucleophilicity of the triad, thus allowing it to expand its catalytic power beyond the nucleophilic catalysis.  相似文献   

6.
Weikl TR  von Deuster C 《Proteins》2009,75(1):104-110
The binding of a ligand molecule to a protein is often accompanied by conformational changes of the protein. A central question is whether the ligand induces the conformational change (induced-fit), or rather selects and stabilizes a complementary conformation from a pre-existing equilibrium of ground and excited states of the protein (selected-fit). We consider here the binding kinetics in a simple four-state model of ligand-protein binding. In this model, the protein has two conformations, which can both bind the ligand. The first conformation is the ground state of the protein when the ligand is off, and the second conformation is the ground state when the ligand is bound. The induced-fit mechanism corresponds to ligand binding in the unbound ground state, and the selected-fit mechanism to ligand binding in the excited state. We find a simple, characteristic difference between the on- and off-rates in the two mechanisms if the conformational relaxation into the ground states is fast. In the case of selected-fit binding, the on-rate depends on the conformational equilibrium constant, whereas the off-rate is independent. In the case of induced-fit binding, in contrast, the off-rate depends on the conformational equilibrium, while the on-rate is independent. Whether a protein binds a ligand via selected-fit or induced-fit thus may be revealed by mutations far from the protein's binding pocket, or other "perturbations" that only affect the conformational equilibrium. In the case of selected-fit, such mutations will only change the on-rate, and in the case of induced-fit, only the off-rate.  相似文献   

7.
Acetyl coenzyme A synthase (ACS) acts in concert with carbon monoxide dehydrogenase (CODH) to catalyze the formation of acetyl-coenzyme A from CO2-derived CO and CH3+ molecules. Recent crystal structures have shown that the three globular domains constituting the ACS subunit may be arranged in either a closed or an open conformation. A long hydrophobic tunnel network allows diffusion of CO between the CODH and the ACS active sites in the closed form, but it is blocked in the open form. On the other hand, the active site of ACS is only accessible for coenzyme A and the methyl donating protein in the open domain conformation. Although several metal compositions have been observed for this active site, present consensus is that it consists of a Ni-Ni-[Fe4S4] cluster. The observed conformational changes of ACS and the resulting different substrate accessibilities of the catalytic central nickel are reviewed here in the context of a putative CO2/CO tunnel gating mechanism.  相似文献   

8.
9.
The conformational dynamics of the histidine ABC transporter HisQMP2 from Salmonella enterica serovar Typhimurium, reconstituted into liposomes, is studied by site-directed spin labeling and double electron–electron resonance spectroscopy in the absence of nucleotides, in the ATP-bound, and in the post-hydrolysis state. The results show that the inter-dimer distances as measured between the Q-loops of HisP2 in the intact transporter resemble those determined for the maltose transporter in all three states of the hydrolysis cycle. Only in the presence of liganded HisJ the closed conformation of the nucleotide binding sites is achieved revealing the transmembrane communication of the presence of substrate. Two conformational states can be distinguished for the periplasmic moiety of HisQMP2 as detected by differences in distributions of interspin distances between positions 86 and 96 or 104 and 197. The observed conformational changes are correlated to proposed open, semi-open and closed conformations of the nucleotide binding domains HisP2. Our results are in line with a rearrangement of transmembrane helices 4 and 4′ of HisQM during the closed to the semi-open transition of HisP2 driven by the reorientation of the coupled helices 3a and 3b to occur upon hydrolysis.  相似文献   

10.
11.
The preprotein cross-linking domain and C-terminal domains of Escherichia coli SecA were removed to create a minimal DEAD motor, SecA-DM. SecA-DM hydrolyzes ATP and has the same affinity for ADP as full-length SecA. The crystal structure of SecA-DM in complex with ADP was solved and shows the DEAD motor in a closed conformation. Comparison with the structure of the E. coli DEAD motor in an open conformation (Protein Data Bank ID 2FSI) indicates main-chain conformational changes in two critical sequences corresponding to Motif III and Motif V of the DEAD helicase family. The structures that the Motif III and Motif V sequences adopt in the DEAD motor open conformation are incompatible with the closed conformation. Therefore, when the DEAD motor makes the transition from open to closed, Motif III and Motif V are forced to change their conformations, which likely functions to regulate passage through the transition state for ATP hydrolysis. The transition state for ATP hydrolysis for the SecA DEAD motor was modeled based on the conformation of the Vasa helicase in complex with adenylyl imidodiphosphate and RNA (Protein Data Bank ID 2DB3). A mechanism for chemical-mechanical coupling emerges, where passage through the transition state for ATP hydrolysis is hindered by the conformational changes required in Motif III and Motif V, and may be promoted by binding interactions with the preprotein substrate and/or other translocase domains and subunits.  相似文献   

12.
Methionyl-tRNA synthetase (MetRS) specifically binds its methionine substrate in an induced-fit mechanism, with methionine binding causing large rearrangements. Mutated MetRS able to efficiently aminoacylate the methionine (Met) analog azidonorleucine (Anl) have been identified by saturation mutagenesis combined with in vivo screening procedures. Here, the crystal structure of such a mutated MetRS was determined in the apo form as well as complexed with Met or Anl (1.4 to 1.7 Å resolution) to reveal the structural basis for the altered specificity. The mutations result in both the loss of important contacts with Met and the creation of new contacts with Anl, thereby explaining the specificity shift. Surprisingly, the conformation induced by Met binding in wild-type MetRS already occurs in the apo form of the mutant enzyme. Therefore, the mutations cause the enzyme to switch from an induced-fit mechanism to a lock-and-key one, thereby enhancing its catalytic efficiency.  相似文献   

13.
The β-1,4-galactosyltransferase 7 (β4GalT7) enzyme is involved in proteoglycan synthesis. In the presence of a manganese ion, it transfers galactose from UDP-galactose to xylose on a proteoglycan acceptor substrate. We present here the crystal structures of human β4GalT7 in open and closed conformations. A comparison of these crystal structures shows that, upon manganese and UDP or UDP-Gal binding, the enzyme undergoes conformational changes involving a small and a long loop. We also present the crystal structures of Drosophila wild-type β4GalT7 and D211N β4GalT7 mutant enzymes in the closed conformation in the presence of the acceptor substrate xylobiose and the donor substrate UDP-Gal, respectively. To understand the catalytic mechanism, we have crystallized the ternary complex of D211N β4GalT7 mutant enzyme in the presence of manganese with the donor and the acceptor substrates together in the same crystal structure. The galactose moiety of the bound UDP-Gal molecule forms seven hydrogen bonds with the protein molecule. The nonreducing end of the xylose moiety of xylobiose binds to the hydrophobic acceptor sugar binding pocket created by the conformational changes, whereas its extended xylose moiety forms hydrophobic interactions with a Tyr residue. In the ternary complex crystal structure, the nucleophile O4 oxygen atom of the xylose molecule is found in close proximity to the C1 and O5 atoms of the galactose moiety. This is the first time that a Michaelis complex of a glycosyltransferase has been described, and it clearly suggests an SN2 type catalytic mechanism for the β4GalT7 enzyme.  相似文献   

14.
Tyrosyl-tRNA synthetase (TyrRS) has been studied extensively by mutational and structural analyses to elucidate its catalytic mechanism. TyrRS has the HIGH and KMSKS motifs that catalyze the amino acid activation with ATP. In the present study, the crystal structures of the Escherichia coli TyrRS catalytic domain, in complexes with l-tyrosine and a l-tyrosyladenylate analogue, Tyr-AMS, were solved at 2.0A and 2.7A resolution, respectively. In the Tyr-AMS-bound structure, the 2'-OH group and adenine ring of the Tyr-AMS are strictly recognized by hydrogen bonds. This manner of hydrogen-bond recognition is conserved among the class I synthetases. Moreover, a comparison between the two structures revealed that the KMSKS loop is rearranged in response to adenine moiety binding and hydrogen-bond formation, and the KMSKS loop adopts the more compact ("semi-open") form, rather than the flexible, open form. The HIGH motif initially recognizes the gamma-phosphate, and then the alpha and gamma-phosphates of ATP, with a slight rearrangement of the residues. The other residues around the substrate also accommodate the Tyr-AMS. This induced-fit form presents a novel "snapshot" of the amino acid activation step in the aminoacylation reaction by TyrRS. The present structures and the T.thermophilus TyrRS ATP-free and bound structures revealed that the extensive induced-fit conformational changes of the KMSKS loop and the local conformational changes within the substrate binding site form the basis for driving the amino acid activation step: the KMSKS loop adopts the open form, transiently shifts to the semi-open conformation according to the adenosyl moiety binding, and finally assumes the rigid ATP-bound, closed form. After the amino acid activation, the KMSKS loop adopts the semi-open form again to accept the CCA end of tRNA for the aminoacyl transfer reaction.  相似文献   

15.
16.
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ϵ, which partially inserts into the enzyme''s central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ϵ binding and dissociation, we show that formation of the extended, inhibitory conformation of ϵ (ϵX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the ϵX state, and post-hydrolysis conditions stabilize it. We also show that ϵ inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ϵ is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ϵ N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ϵ suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.  相似文献   

17.
Previously reported crystal structures of free and DNA-bound dimers of λ Cro differ strongly (about 4 Å backbone rmsd), suggesting both flexibility of the dimer interface and induced-fit protein structure changes caused by sequence-specific DNA binding. Here, we present two crystal structures, in space groups P3221 and C2 at 1.35 and 1.40 Å resolution, respectively, of a variant of λ Cro with three mutations in its recognition helix (Q27P/A29S/K32Q, or PSQ for short). One dimer structure (P3221; PSQ form 1) resembles the DNA-bound wild-type Cro dimer (1.0 Å backbone rmsd), while the other (C2; PSQ form 2) resembles neither unbound (3.6 Å) nor bound (2.4 Å) wild-type Cro. Both PSQ form 2 and unbound wild-type dimer crystals have a similar interdimer β-sheet interaction between the β1 strands at the edges of the dimer. In the former, an infinite, open β-structure along one crystal axis results, while in the latter, a closed tetrameric barrel is formed. Neither the DNA-bound wild-type structure nor PSQ form 1 contains these interdimer interactions. We propose that β-sheet superstructures resulting from crystal contact interactions distort Cro dimers from their preferred solution conformation, which actually resembles the DNA-bound structure. These results highlight the remarkable flexibility of λ Cro but also suggest that sequence-specific DNA binding may not induce large changes in the protein structure.  相似文献   

18.
DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase–DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s−1, much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.  相似文献   

19.
Binding of substrates into the active site, often through complementarity of shapes and charges, is central to the specificity of an enzyme. In many cases, substrate binding induces conformational changes in the active site, promoting specific interactions between them. In contrast, non-substrates either fail to bind or do not induce the requisite conformational changes upon binding and thus no catalysis occurs. In principle, both lock and key and induced-fit binding can provide specific interactions between the substrate and the enzyme. In this study, we present an interesting case where cofactor binding pre-tunes the active site geometry to recognize only the cognate substrates. We illustrate this principle by studying the substrate binding and kinetic properties of Xylose Reductase from Debaryomyces hansenii (DhXR), an AKR family enzyme which catalyzes the reduction of carbonyl substrates using NADPH as co-factor. DhXR reduces D-xylose with increased specificity and shows no activity towards “non-substrate” sugars like L-rhamnose. Interestingly, apo-DhXR binds to D-xylose and L-rhamnose with similar affinity (Kd∼5.0–10.0 mM). Crystal structure of apo-DhXR-rhamnose complex shows that L-rhamnose is bound to the active site cavity. L-rhamnose does not bind to holo-DhXR complex and thus, it cannot competitively inhibit D-xylose binding and catalysis even at 4–5 fold molar excess. Comparison of Kd values with Km values reveals that increased specificity for D-xylose is achieved at the cost of moderately reduced affinity. The present work reveals a latent regulatory role for cofactor binding which was previously unknown and suggests that cofactor induced conformational changes may increase the complimentarity between D-xylose and active site similar to specificity achieved through induced-fit mechanism.  相似文献   

20.
Catalysis of amino acid activation by Bacillus stearothermophilus tryptophanyl-tRNA synthetase involves three allosteric states: (1) Open; (2) closed pre-transition state (PreTS); and (3) closed products (Product). The interconversions of these states entail significant domain motions driven by ligand binding. We explore the application of molecular dynamics simulations to investigate ligand-linked conformational stability changes associated with this catalytic cycle. Multiple molecular dynamics trajectories (5 ns) for 11 distinct liganded and unliganded monomer configurations show that the PreTS conformation is unstable in the absence of ATP, reverting within approximately 600 ps nearly to the Open conformation. In contrast, Open and Product state trajectories were stable, even without ligands, confirming the previous suggestion that catalysis entails destabilization of the protein conformation, driven by ATP-binding energies developed as the PreTS state assembles during induced-fit. The simulations suggest novel mechanistic details associated with both induced-fit (Open-PreTS) and catalysis (PreTS-Product). Notably, Mg2+ -ATP interactions are coupled to interactions between ATP and active-site lysine side-chains via mechanisms that cannot be captured under the molecular mechanics approximations, and which therefore require restraining potentials for stable simulation. Simulations of Mg2+. ATP-bound PreTS complexes with restraining potentials and with a virtual K111A mutant confirm that these coupling interactions are necessary to sustain the PreTS conformation and, in turn, provide a new model for how the PreTS conformation activates ATP for catalysis. These results emphasize the central role of the PreTS state as a high-energy intermediate structure along the catalytic pathway and suggest that Mg2+ and the KMSKS loop function cooperatively during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号