首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Msh2-Msh3 heterodimer recognizes various DNA mispairs, including loops of DNA ranging from 1 to 14 nucleotides and some base-base mispairs. Homology modeling of the mispair-binding domain (MBD) of Msh3 using the related Msh6 MBD revealed that mismatch recognition must be different, even though the MBD folds must be similar. Model-based point mutation alleles of Saccharomyces cerevisiae msh3 designed to disrupt mispair recognition fell into two classes. One class caused defects in repair of both small and large insertion/deletion mispairs, whereas the second class caused defects only in the repair of small insertion/deletion mispairs; mutations of the first class also caused defects in the removal of nonhomologous tails present at the ends of double-strand breaks (DSBs) during DSB repair, whereas mutations of the second class did not cause defects in the removal of nonhomologous tails during DSB repair. Thus, recognition of small insertion/deletion mispairs by Msh3 appears to require a greater degree of interactions with the DNA conformations induced by small insertion/deletion mispairs than with those induced by large insertion/deletions that are intrinsically bent and strand separated. Mapping of the two classes of mutations onto the Msh3 MBD model appears to distinguish mispair recognition regions from DNA stabilization regions.The DNA mismatch repair (MMR) pathway recognizes and repairs mispaired and damaged bases in DNA, which primarily result from replication errors but which also result from recombination and chemical damage to DNA and DNA precursors (16, 22). Repairing mispairs improves the overall fidelity of DNA replication and is important for genome stability (24). Inherited defects in MMR are responsible for most cases of Lynch syndrome (hereditary nonpolyposis colorectal cancer [HNPCC]), and furthermore, the epigenetic silencing of one of the genes involved in MMR, MLH1, underlies most cases of sporadic MMR-defective cancer (19, 29).MMR is initiated by the recognition of base-base mismatches or insertion/deletion mispairs. In bacteria, the homodimeric MutS complex directly binds mispairs, bending the mispair-containing DNA by almost 60 degrees and shifting one of the mispaired bases, such as the thymidine base from G-T or +T mispairs, out of the DNA base stack (17). The mispaired base is stabilized by π stacking with a conserved phenylalanine (17, 26, 26a). DNA binding induces a functional asymmetry to the MutS complex; one subunit directly recognizes the mispair via a mispair-binding domain (MBD), whereas the MBD of the second subunit is primarily involved in nonspecific backbone interactions (17, 26a).In eukaryotes, mitotic MMR utilizes two heterodimeric complexes of MutS homologs: Msh2-Msh6 and Msh2-Msh3 (5, 16, 23, 41). In these asymmetric heterodimers, Msh6 and Msh3 directly recognize the mispair via their MBDs, whereas the Msh2 subunit appears to be functionally equivalent to the MutS subunit that nonspecifically binds the DNA backbone. In wild-type cells, the Msh2-Msh6 heterodimer is thought to primarily recognize and act in the repair of base-base mispairs and small 1- or 2-nucleotide insertion/deletions (12, 16, 20-24). The crystal structure of human Msh2-Msh6 revealed that mispair recognition by Msh6 shares many details with Escherichia coli MutS, including the π-stacking phenylalanine (17, 26a, 39). In contrast, in wild-type cells the Msh2-Msh3 heterodimer is thought to primarily recognize and act in the repair of insertions and deletions from 1 to 14 nucleotides in size (11, 20, 21, 27, 33, 37, 40), although we have previously shown that Msh2-Msh3 also recognizes some base-base mispairs with a preference for those that have weak hydrogen bonding (13). Msh2-Msh3 is also targeted to sites of DNA double-strand breaks (DSBs), potentially before a branched recombination intermediate is formed, where it acts in the processing of 3′ single-stranded tails (10, 28, 36).While no structural information for any Msh3 homolog is available, several lines of evidence suggest that mispairs are recognized by Msh2-Msh3 in a substantially different way than mispairs are recognized by MutS and Msh2-Msh6. First, Msh3 lacks the conserved π-stacking phenylalanine present in both MutS and Msh6, which is required for MMR by these proteins in vivo (9, 18). In contrast, mutagenesis of the Saccharomyces cerevisiae Msh3 residue located at the position equivalent to that of the phenylalanine conserved in MutS and Msh6 (K158, called K187 prior to the identification of the correct start codon [13]) caused only a modest MMR defect (18). Second, when other conserved residues and predicted DNA-backbone-contacting residues in S. cerevisiae Msh3 were mutated to alanine, only msh3-R247A (previously called msh3-R276A) caused a significant defect in the repair of 1-, 2-, and 4-nucleotide-long insertion/deletion mispairs (18).Despite these differences, the Msh3 MBD is likely related to the MBD of Msh6 and MutS. Replacement of the Msh6 MBD with the Msh3 MBD generated a functional chimera possessing Msh3 substrate specificity (32). Moreover, combining the msh3-K158A mutation with K160A gave rise to an msh3 mutant with an MMR defect greater than that for either single mutant alone (18). This double mutant caused a loss of specificity for mispaired DNA (18). Together these data indicate not only that mispair specificity is determined by the Msh3 MBD but also that the critical region of the Msh3 MBD mediating mispair recognition likely overlaps the same region as the MBDs of MutS and Msh6, even if the nature of the recognition is different. We have therefore used homology modeling and site-directed mutagenesis to gain insight into how Msh3 recognizes a diverse array of mispairs.  相似文献   

2.
A very short patch repair system prevents mutations resulting from deamination of 5-methylcytosine to thymine. The Vsr endonuclease is the key enzyme of this system, providing sequence specificity. We identified two genes encoding Vsr endonucleases V.NgoAXIII and V.NgoAXIV from Neisseria gonorrhoeae FA1090 based on DNA sequence similarity to genes encoding Vsr endonucleases from other bacteria. After expression of the gonococcal genes in Escherichia coli, the proteins were biochemically characterized and the endonucleolytic activities and specificities of V.NgoAXIII and V.NgoAXIV were determined. V.NgoAXIII was found to be multispecific and to recognize T:G mismatches in every nucleotide context tested, whereas V.NgoAXIV recognized T:G mismatches in the following sequences: GTGG, CTGG, GTGC, ATGC, and CTGC. Alanine mutagenesis of conserved residues showed that Asp50 and His68 of V.NgoAXIII and Asp51 and His69 of V.NgoAXIV are essential for hydrolytic activity. Glu25, His64, and Asp97 of V.NgoAXIV and Glu24, Asp63, and Asp97 of V.NgoAXIII are important but not crucial for the activity of V.NgoAXIII and V.NgoAXIV. However, Glu24 and Asp63 are also important for the specificity of V.NgoAXIII. On the basis of our results concerning features of Vsr endonucleases expressed by N. gonorrhoeae FA1090, we postulate that at least two types of Vsr endonucleases can be distinguished.The existence of methylated DNA in procaryotes and eucaryotes has been well documented, with 5-methylcytosine (m5C) being the most commonly modified base (1). Organisms use m5C as an epigenetic tag, but this modified base is very unstable and can undergo spontaneous deamination (15), resulting in a T:G mismatch. In the absence of an appropriate repair mechanism, cytosine deamination is highly mutagenic. Since the deamination usually occurs in a nonreplicating background, the lesion is refractory to methyl-directed mismatch repair. If the T:G mismatch is repaired by a general repair mechanism, the creation of an A·T substitution is as likely as the restoration of the original G·C base pair. In DNA, thymine resulting from deamination of m5C cannot be removed by general repair mechanisms because they do not recognize this thymine as erroneous. As a result, in the absence of a specific repair mechanism, deamination of m5C is highly mutagenic.In Escherichia coli, a repair pathway counteracting the mutagenic effects of hydrolytic deamination of m5C is based on the action of a very short patch (VSP) repair system (2, 5, 8, 18, 23). The central enzyme of this pathway is Vsr, an endonuclease whose coding sequence overlaps the gene for M.EcoKDcm, an m5C methyltransferase (m5C-MTase) (19, 23). In genomes of other bacteria, the vsr genes are invariably associated with genes coding for m5C-MTases (3, 16, 20). The Vsr endonucleases that accompany m5C-MTases are believed to exhibit sequence specificity based on the recognition sequence of the accompanying MTase. However, only a few MTases have been studied in detail and the data indicate that methylation at sites other than that ascribed to the corresponding restriction endonuclease can occur with significant frequency (4), indicating that the recognition sequence of an MTase is somewhat arbitrarily assigned. The best-characterized Vsr endonuclease, V.EcoKDcm (9, 10, 29), is a gene product of E. coli K-12. This endonuclease recognizes the sequence CTWGG (W is A or T), where the underlined thymine is mispaired with guanine. The enzyme nicks the DNA backbone on the 5′ side of the mispaired thymine (12). The crystal structure of V.EcoKDcm shows that its catalytic center consists of two conserved aspartic acid residues (D51 and D97), glutamic acid (E25), threonine (T63), and two histidines (H64 and H69). Alanine-scanning mutagenesis of these conserved residues revealed that E25A, H64A, and D97A mutants have reduced activity, while D51A and H69A mutants have no detectable activity (28-30).An individual strain of Neisseria gonorrhoeae may produce up to 16 different DNA MTases, with the bulk of these enzymes adding m5C to one of the cytosines in the recognition sequence (20, 25). Due to the high degree of potential cytosine methylation in the gonococcus, one might predict that genes containing any of these recognition sequences would represent hot spots for mutation. However, to date, no hot spots have been identified. Furthermore, we were only able to identify two potential Vsr endonucleases. While the genes encoding both of these proteins appear to be linked to restriction-modification system genes in a variety of gonococcal strains, these systems appear to be inactive (16). To understand the biochemical basis of VSP repair in the Neisseriaceae, we studied the properties of Vsr endonucleases from N. gonorrhoeae FA1090. Given the large number of m5C-MTases found in the gonococcus and the paucity of vsr genes identified using bioinformatic analysis based on amino acid sequence similarity with known Vsr proteins, it is possible that the Vsr endonucleases expressed by N. gonorrhoeae could have more general sequence recognition properties than those found in E. coli or Bacillus stearothermophilus. Alternatively, this species could have genes encoding more Vsr endonucleases which are too divergent structurally to be identified by bioinformatic methods. Our results indicate that N. gonorrhoeae FA1090 expresses two Vsr endonucleases. The first, V.NgoAXIII, recognizes T:G mismatches in all nucleotide contexts of known gonococcal MTases tested, and the second, V.NgoAXIV, recognizes only a subset. Moreover, comparison of their amino acid sequences has shown that these Vsr endonucleases differ in a region responsible for the recognition and cleavage of T:G mismatches, suggesting the existence of two different families of enzymes.  相似文献   

3.
Mutation frequencies were studied in 174 Stenotrophomonas maltophilia isolates from clinical and nonclinical environments by detecting spontaneous rifampin-resistant mutants in otherwise-susceptible populations. The distribution of mutation frequencies followed a pattern similar to that found for other bacterial species, with a modal value of 1 × 10−8. Nevertheless, the proportion of isolates showing mutation frequencies below the modal value (hypomutators) was significantly higher for S. maltophilia than those so far reported in other organisms. Low mutation frequencies were particularly frequent among environmental S. maltophilia strains (58.3%), whereas strong mutators were found only among isolates with a clinical origin. These results indicate that clinical environments might select bacterial populations with high mutation frequencies, likely by second-order selection processes. In several of the strong-mutator isolates, functional-complementation assays with a wild-type allele of the mutS gene demonstrated that the mutator phenotype was due to the impairment of MutS activity. In silico analysis of the amino acid changes present in the MutS proteins of these hypermutator strains in comparison with the normomutator isolates suggests that the cause of the defect in MutS might be a H683P amino acid change.Stenotrophomonas maltophilia is a Gram-negative, nonfermenting environmental bacterial species often isolated from the rhizosphere and from water sources (11, 12, 63). Some S. maltophilia strains have been used for bioremediation (13, 24, 73) or bioaugmentation (37). However, besides its environmental origin and potential relevance for biotechnological purposes, S. maltophilia is also a relevant human opportunistic pathogen (44) associated with a broad spectrum of clinical syndromes, such as bacteremia (79, 81), endocarditis (18), infection in cancer patients (1), and respiratory tract infections, including those suffered by cystic fibrosis (CF) patients (72, 77). One of the most problematic characteristics of S. maltophilia is its intrinsic high resistance to several antibiotics (4). This intrinsic antibiotic resistance is at least partly due to the presence in the genome of S. maltophilia (17) of genes encoding antibiotic-inactivating enzymes (6, 9, 30, 39, 42, 58) and multidrug resistance (MDR) efflux pumps (2, 3, 43, 78). More recently, a chromosomally encoded Qnr protein that contributes to the intrinsic resistance to quinolones of S. maltophilia has been described (67, 68).A clear difference between infective (clinical) and environmental (nonclinical) S. maltophilia strains has not been reported (12, 63). However, although the available data fit the concept that opportunistic pathogens have not specifically evolved to infect humans (48), this does not mean that they do not evolve during the infective process. For most acute infections, we can presume that the time of in-host evolution is probably too short to detect relevant adaptive changes. Nevertheless, the situation might be different in chronic infections, such as those involving the bronchial compartment in CF patients. In this case, the same bacterial clone can be maintained and grow inside the host for years (62). This produces strong diversification over time and in different compartments of the lung (25, 71, 80), a process in which the acquisition of a mutator phenotype is important (52). Thus, isolates derived from an initial clone but presenting different morphotypes (47), different phenotypes of susceptibility to antibiotics (26) or in the expression of virulence determinants (14, 15, 36), or with different mutation frequencies (49, 60) are recovered from each individual patient suffering chronic infections. More recently, intraclonal diversification has also been described for Pseudomonas aeruginosa causing acute infections in intubated patients (38). Taken together, this indicates that bacteria can evolve during infection.For different bacterial species, strains isolated from CF patients with chronic lung infections show high mutation frequencies (hypermutable strains) (19, 60, 61, 66), whereas hypermutators have rarely been found in isolates from acute infections (33). An explanation for this difference could be that hypermutable strains tend to be selected for in the highly compartmentalized environment of the infected lung by intensive antibiotic therapy, as well as by the stressful conditions of the habitat. This is a second-order selection process (75, 76), in which mutations are selected because they confer an advantage in clinical environments in such a way that mutator strains are selected because they can produce more mutants (both advantageous and deleterious) for selection. In cases of chronic infections that are treated, strong and maintained selective local processes might occur, either by antibiotic treatment or by the actions of the anti-infective systems of the host. Natural out-of-host open environments obviously might have local stresses. However, the intensity of selection is expected to be lower in these habitats, and a constant replacement of potentially lost organisms by migration of neighbor populations probably mitigates the local selection of mutators and favors the enrichment of bacteria presenting low mutation frequencies. In the case of chronic infections, the replacement of mutators by neighbor normomutators is unlikely, because those infections are produced by a single clone that remains for several years in the host (62). Furthermore, although the infection process presents strong evolutionary bottlenecks for bacterial populations, the human host also provides a constant temperature, reliable nutrient supplies, and a habitat largely free from predators and competitors. Thus, while hypermutation might increase the capability of bacteria to adapt to some specific challenges in the clinical environment, the cost of hypermutation in terms of deleterious mutations might also be diminished, and these effects might be mutually reinforcing.The hypothesis explored in this paper is that S. maltophilia is adapted to deal with out-of-host fluctuating environmental variations but that once the organism enters a patient as an opportunistic pathogen, its adaptive needs significantly increase due to the actions of stressful local environmental conditions, such as the immune response and, when present, antibiotics. This enhanced stress under infective conditions might result in the selection of variants with increased mutation frequencies in a second-order selection process (75, 76). To test this hypothesis, the mutation frequencies of S. maltophilia clinical isolates (obtained from CF and non-CF patients) and from the environment (nonclinical origin) were compared. Most works that have been published on the different mutation frequencies in bacterial populations have focused on the detection of strains showing a high mutation frequency (mutators). In our work, we describe for the first time the presence of mutators in clinical isolates of S. maltophilia and demonstrate that hypermutation in several of those isolates is due to defects in MutS.Nevertheless, our main goal has been the analysis of the global distribution of mutation frequencies in an ample number of samples from clinical and nonclinical environments. Our results indicate not only that mutators are more frequent in clinical S. maltophilia isolates, but also that the overall distribution of mutation frequencies is different in S. maltophilia populations with environmental or clinical origins, with a tendency toward mutation frequencies lower than the modal mutation value (hypomutators) in the environmental isolates.  相似文献   

4.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

5.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

6.
7.
8.
9.
10.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

11.
12.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

13.
In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.In animals, RNA interference (RNAi) was first described for Caenorhabditis elegans (27). The production or introduction of double-stranded RNA (dsRNA) in cells leads to the degradation of mRNAs containing homologous sequences by sequence-specific cleavage of mRNAs. Central to RNAi is the production of 21- to 26-nucleotide small interfering RNAs (siRNAs) from dsRNA and the assembly of an RNA-induced silencing complex (RISC), followed by the degradation of the target mRNA (23, 84). RNAi is a known antiviral strategy of plants (3, 53) and insects (21, 39, 51). Study of Drosophila melanogaster in particular has given important insights into RNAi responses against pathogenic viruses and viral RNAi inhibitors (31, 54, 83, 86, 91). RNAi is well characterized for Drosophila, and orthologs of antiviral RNAi genes have been found in Aedes and Culex spp. (13, 63).Arboviruses, or arthropod-borne viruses, are RNA viruses mainly of the families Bunyaviridae, Flaviviridae, and Togaviridae. The genus Alphavirus within the family Togaviridae contains several mosquito-borne pathogens: arboviruses such as Chikungunya virus (16) and equine encephalitis viruses (88). Replication of the prototype Sindbis virus and Semliki Forest virus (SFV) is well understood (44, 71, 74, 79). Their genome consists of a positive-stranded RNA with a 5′ cap and a 3′ poly(A) tail. The 5′ two-thirds encodes the nonstructural polyprotein P1234, which is cleaved into four replicase proteins, nsP1 to nsP4 (47, 58, 60). The structural polyprotein is encoded in the 3′ one-third of the genome and cleaved into capsid and glycoproteins after translation from a subgenomic mRNA (79). Cytoplasmic replication complexes are associated with cellular membranes (71). Viruses mature by budding at the plasma membrane (35).In nature, arboviruses are spread by arthropod vectors (predominantly mosquitoes, ticks, flies, and midges) to vertebrate hosts (87). Little is known about how arthropod cells react to arbovirus infection. In mosquito cell cultures, an acute phase with efficient virus production is generally followed by the establishment of a persistent infection with low levels of virus production (9). This is fundamentally different from the cytolytic events following arbovirus interactions with mammalian cells and pathogenic insect viruses with insect cells. Alphaviruses encode host response antagonists for mammalian cells (2, 7, 34, 38).RNAi has been described for mosquitoes (56) and, when induced before infection, antagonizes arboviruses and their replicons (1, 4, 14, 15, 29, 30, 32, 42, 64, 65). RNAi is also functional in various mosquito cell lines (1, 8, 43, 49, 52). In the absence of RNAi, alphavirus and flavivirus replication and/or dissemination is enhanced in both mosquitoes and Drosophila (14, 17, 31, 45, 72). RNAi inhibitors weakly enhance SFV replicon replication in tick and mosquito cells (5, 33), posing the questions of how, when, and where RNAi interferes with alphavirus infection in mosquito cells.Here we use an A. albopictus-derived mosquito cell line to study RNAi responses to SFV. Using reporter-based assays, we demonstrate that SFV cannot avoid or efficiently inhibit the establishment of an RNAi response. We also demonstrate that the RNAi signal can spread between mosquito cells. SFV cannot inhibit cell-to-cell spread of the RNAi signal, and spread of the virus-induced RNAi signal (dsRNA/siRNA) can inhibit the replication of incoming SFV in neighboring cells. Furthermore, we show that SFV expression of a siRNA-binding protein increases levels of virus replication mainly by enhancing virus spread between cells rather than replication in initially infected cells. Taken together, these findings suggest a novel mechanism, cell-to-cell spread of antiviral dsRNA/siRNA, by which RNAi limits SFV dissemination in mosquito cells.  相似文献   

14.
15.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

16.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

17.
18.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号