共查询到20条相似文献,搜索用时 15 毫秒
1.
Kraynack BA Chan A Rosenthal E Essid M Umansky B Waters MG Schmitt HD 《Molecular biology of the cell》2005,16(9):3963-3977
The "Dsl1p complex" in Saccharomyces cerevisiae, consisting of Dsl1p and Tip20p, is involved in Golgi-ER retrograde transport and it is functionally conserved from yeast to mammalian cells. To further characterize this complex, we analyzed the function of Dsl3p, a protein that interacts with Dsl1p in yeast two hybrids screens. DSL3, recently identified in a genome wide analysis of essential genes as SEC39, encodes a cytosolic protein of 82 kDa that is peripherally associated with membranes derived from the ER. There is strong genetic interaction between DSL3 and other factors required for Golgi-ER retrograde transport. Size exclusion chromatography and affinity purification approaches confirmed that Dsl3p is associated with subunits of the "Dsl1p complex." The complex also includes the Q/t-SNARE proteins, Use1p, Sec20p, and Ufe1p, integral membrane proteins that constitute the trimeric acceptor for R/v-SNAREs on Golgi-derived vesicles at the ER. Using mutants, we performed a detailed analysis of interactions between subunits of the Dsl1p complex and the ER-localized SNARE proteins. This analysis showed that both Dsl1p and Dsl3p are required for the stable interaction of the SNARE Use1p with a central subcomplex consisting of Tip20p and the SNARE proteins Ufe1p and Sec20p. 相似文献
2.
Johan C. Sunryd Banyoon Cheon Jill B. Graham Kristina M. Giorda Rafael A. Fissore Daniel N. Hebert 《The Journal of biological chemistry》2014,289(23):16085-16099
The endoplasmic reticulum (ER) is organized in part by adapter proteins that nucleate the formation of large protein complexes. Tetratricopeptide repeats (TPR) are well studied protein structural motifs that support intermolecular protein-protein interactions. TMTC1 and TMTC2 were identified by an in silico search as TPR-containing proteins possessing N-terminal ER targeting signal sequences and multiple hydrophobic segments, suggestive of polytopic membrane proteins that are targeted to the secretory pathway. A variety of cell biological and biochemical assays was employed to demonstrate that TMTC1 and TMTC2 are both ER resident integral membrane proteins with multiple clusters of TPR domains oriented within the ER lumen. Proteomic analysis followed by co-immunoprecipitation verification found that both proteins associated with the ER calcium uptake pump SERCA2B, and TMTC2 also bound to the carbohydrate-binding chaperone calnexin. Live cell calcium measurements revealed that overexpression of either TMTC1 or TMTC2 caused a reduction of calcium released from the ER following stimulation, whereas the knockdown of TMTC1 or TMTC2 increased the stimulated calcium released. Together, these results implicate TMTC1 and TMTC2 as ER proteins involved in ER calcium homeostasis. 相似文献
3.
Mathilde Bonnemaison Nils Bäck Yimo Lin Juan S. Bonifacino Richard Mains Betty Eipper 《Traffic (Copenhagen, Denmark)》2014,15(10):1099-1121
The adaptor protein 1A complex (AP‐1A) transports cargo between the trans‐Golgi network (TGN) and endosomes. In professional secretory cells, AP‐1A also retrieves material from immature secretory granules (SGs). The role of AP‐1A in SG biogenesis was explored using AtT‐20 corticotrope tumor cells expressing reduced levels of the AP‐1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non‐condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue‐stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α‐amidating monooxygenase‐1 (PAM‐1), integral membrane enzymes that enter immature SGs. The non‐condensing SGs contained POMC products and PAM‐1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM‐1 into PHM was unaltered, but PHM basal secretion was increased in sh‐μ1A PAM‐1 cells. Despite lacking a canonical AP‐1A binding motif, yeast two‐hybrid studies demonstrated an interaction between the PAM‐1 cytosolic domain and AP‐1A. Coimmunoprecipitation experiments with PAM‐1 mutants revealed an influence of the luminal domains of PAM‐1 on this interaction. Thus, AP‐1A is crucial for normal SG biogenesis, function and composition. 相似文献
4.
Immunoisolation and Characterization of a Subdomain of the Endoplasmic Reticulum That Concentrates Proteins Involved in COPII Vesicle Biogenesis 总被引:3,自引:2,他引:1 下载免费PDF全文
Tom C. Hobman Baoping Zhao Honey Chan Marilyn Gist Farquhar 《Molecular biology of the cell》1998,9(6):1265-1278
Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure. 相似文献
5.
Mutants of the Yeast Yarrowia lipolytica Defective in Protein Exit from the Endoplasmic Reticulum Are Also Defective in Peroxisome Biogenesis 总被引:2,自引:0,他引:2 下载免费PDF全文
Mutations in the SEC238 and SRP54 genes of the yeast Yarrowia lipolytica not only cause temperature-sensitive defects in the exit of the precursor form of alkaline extracellular protease and of other secretory proteins from the endoplasmic reticulum and in protein secretion but also lead to temperature-sensitive growth in oleic acid-containing medium, the metabolism of which requires the assembly of functionally intact peroxisomes. The sec238A and srp54KO mutations at the restrictive temperature significantly reduce the size and number of peroxisomes, affect the import of peroxisomal matrix and membrane proteins into the organelle, and significantly delay, but do not prevent, the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX1 and PEX6 genes, which encode members of the AAA family of N-ethylmaleimide-sensitive fusion protein-like ATPases, not only affect the exit of precursor forms of secretory proteins from the endoplasmic reticulum but also prevent the exit of the peroxisomal membrane proteins Pex2p and Pex16p from the endoplasmic reticulum and cause the accumulation of an extensive network of endoplasmic reticulum membranes. None of the peroxisomal matrix proteins tested associated with the endoplasmic reticulum in sec238A, srp54KO, pex1-1, and pex6KO mutant cells. Our data provide evidence that the endoplasmic reticulum is required for peroxisome biogenesis and suggest that in Y. lipolytica, the trafficking of some membrane proteins, but not matrix proteins, to the peroxisome occurs via the endoplasmic reticulum, results in their glycosylation within the lumen of the endoplasmic reticulum, does not involve transport through the Golgi, and requires the products encoded by the SEC238, SRP54, PEX1, and PEX6 genes. 相似文献
6.
Sec2p Mediates Nucleotide Exchange on Sec4p and
Is Involved in Polarized Delivery of Post-Golgi Vesicles 总被引:27,自引:3,他引:24 下载免费PDF全文
Christiane Walch-Solimena Ruth N. Collins Peter J. Novick 《The Journal of cell biology》1997,137(7):1495-1509
The small GTPase Sec4p is required for vesicular transport at the post-Golgi stage of yeast secretion. Here we present evidence that mutations in SEC2, itself an essential gene that acts at the same stage of the secretory pathway, cause Sec4p to mislocalize as a result of a random rather than a polarized accumulation of vesicles. Sec2p and Sec4p interact directly, with the nucleotide-free conformation of Sec4p being the preferred state for interaction with Sec2p. Sec2p functions as an exchange protein, catalyzing the dissociation of GDP from Sec4 and promoting the binding of GTP. We propose that Sec2p functions to couple the activation of Sec4p to the polarized delivery of vesicles to the site of exocytosis. 相似文献
7.
The Sec1 Family: A Novel Family of Proteins Involved in Synaptic Transmission and General Secretion 总被引:9,自引:1,他引:9
Abstract: The Sec1 family, a novel family of proteins involved in synaptic transmission and general secretion, is described. To date, 14 members of this family have been identified: four yeast proteins, Sec1, Sly1, Slp1/Vps33, and Vps45/Stt10; three nematode proteins, Unc-18 and the homologues of Sly1 and Slp1; the Drosophila Rop; and six mammalian proteins, the rat Munc-18/n-Sec1/rbSec1A and rbSec1B, the mouse Munc-18b/muSec1 and Munc-18c, and the bovine Munc-18 and mSec1. The mammalian proteins share 44–63% sequence identity with the nematode Unc-18 and Drosophila Rop proteins and 20–29% with the yeast proteins and their nematode homologues. The Sec1 proteins are mostly hydrophilic and lack a transmembrane domain. Nevertheless, Sec1 proteins are found as membrane-bound proteins. Some of them are also found as soluble, cytoplasmic proteins. Binding of the rat brain Sec1 to the presynaptic membrane may be due to strong interaction with syntaxin, an integral component of this membrane. The rat brain Sec1 is also bound to Cdk5, a neural cyclin-dependent kinase. The Sec1 proteins play a positive role in exocytosis. Loss of function mutations in SEC1 , SLY1 , or SLP1 result in blocking of protein transport between distinct yeast subcellular compartments. Inactivation of unc-18 and rop results in inhibition of neurotransmitter release and, in the case of rop , inhibition of general secretion as well. In addition, studies of Rop and n-Sec1 indicate that they also play a negative role in synaptic transmission, mediated by their interaction with syntaxin. A working model addressing the dual regulative role of the Sec1 proteins in secretion is presented. 相似文献
8.
9.
Christian Hofmann Iain M. Cheeseman Bruce L. Goode Kent L. McDonald Georjana Barnes David G. Drubin 《The Journal of cell biology》1998,143(4):1029-1040
In this paper, we describe the identification and characterization of two novel and essential mitotic spindle proteins, Duo1p and Dam1p. Duo1p was isolated because its overexpression caused defects in mitosis and a mitotic arrest. Duo1p was localized by immunofluorescence, by immunoelectron microscopy, and by tagging with green fluorescent protein (GFP), to intranuclear spindle microtubules and spindle pole bodies. Temperature-sensitive duo1 mutants arrest with short spindles. This arrest is dependent on the mitotic checkpoint. Dam1p was identified by two-hybrid analysis as a protein that binds to Duo1p. By expressing a GFP–Dam1p fusion protein in yeast, Dam1p was also shown to be associated with intranuclear spindle microtubules and spindle pole bodies in vivo. As with Duo1p, overproduction of Dam1p caused mitotic defects. Biochemical experiments demonstrated that Dam1p binds directly to microtubules with micromolar affinity. We suggest that Dam1p might localize Duo1p to intranuclear microtubules and spindle pole bodies to provide a previously unrecognized function (or functions) required for mitosis. 相似文献
10.
Christine David Johannes Koch Silke Oeljeklaus Alexandra Laernsack Sophie Melchior Sebastian Wiese Andreas Schummer Ralf Erdmann Bettina Warscheid Cécile Brocard 《Molecular & cellular proteomics : MCP》2013,12(9):2408-2425
Peroxisome biogenesis initiates at the endoplasmic reticulum (ER) and maturation allows for the formation of metabolically active organelles. Yet, peroxisomes can also multiply by growth and division. Several proteins, called peroxins, are known to participate in these processes but little is known about their organization to orchestrate peroxisome proliferation. Here, we demonstrate that regulation of peroxisome proliferation relies on the integrity of the tubular ER network. Using a dual track SILAC-based quantitative interaction proteomics approach, we established a comprehensive network of stable as well as transient interactions of the peroxin Pex30p, an integral membrane protein. Through association with merely ER resident proteins, in particular with proteins containing a reticulon homology domain, and with other peroxins, Pex30p designates peroxisome contact sites at ER subdomains. We show that Pex30p traffics through the ER and segregates in punctae to which peroxisomes specifically append, and we ascertain its transient interaction with all subunits of the COPI coatomer complex suggesting the involvement of a vesicle-mediated transport. We establish that the membrane protein Pex30p facilitates the connection of peroxisomes to the ER. Taken together, our data indicate that Pex30p-containing protein complexes act as focal points from which peroxisomes can form and that the tubular ER architecture organized by the reticulon homology proteins Rtn1p, Rtn2p and Yop1p controls this process.All nucleated cells contain essential round-shaped organelles called peroxisomes, whose function is mainly associated with lipid metabolism (1). Depending on the cellular requirements, the size, number, and protein content of these single membrane-bound organelles can vary widely. Although peroxisomes are dispensable for unicellular species such as yeasts, they are essential for the development of multicellular organisms (2, 3). In human, mutations in PEX genes lead to defects in peroxisome function or formation and are associated with the development of lethal pathologies (4). These PEX genes code for proteins, called peroxins, which are involved in peroxisome assembly and maintenance (5).Two major routes seem to lead to peroxisome formation, namely, de novo biogenesis and growth/division of pre-existing peroxisomes. The division pathway operates with proteins of the Pex11 family and requires fission factors shared with mitochondria (6). Studies in yeast and mammalian cells revealed that through the action of the protein Pex3p peroxisome precursors can also originate from the endoplasmic reticulum (ER)1 and, via import of membrane and matrix proteins, mature into fully functional organelles (7, 8). Furthermore, several peroxisomal membrane proteins were shown to migrate to peroxisomes via the ER (7, 9, 10). The molecular mechanism underlying the biogenic pathway of peroxisome formation has not been clarified so far. Recent data based on cell-free vesicle-budding reactions, however, demonstrated that several peroxisomal proteins traffic from the ER to peroxisomes in a COPII vesicle-independent manner (11). These observations point to the existence of vesicular events to mediate the transport of peroxisomal membrane proteins from the ER. In fact, analysis of secretory mutant yeast cells already suggest that part of the ER-associated secretory machinery is involved in peroxisome biogenesis (12).The de novo biogenesis of peroxisomes and the growth/division pathways are usually seen as independent routes; however, these events may be coordinated and, thus, intimately linked. Indeed, peroxisomes need to acquire membrane components to proliferate and it has been proposed that their binding to the cell cortex or to the cytoskeleton allows their partitioning and segregation during cell division (13–15).Among the proteins required for assembly of peroxisomes, the membrane proteins Pex23p and Pex24p play essential roles in the yeast Yarrowia lipolytica (16, 17). Homologs of these two proteins in Saccharomyces cerevisiae are Pex30p, Pex31p, and Pex32p, all containing at least one transmembrane domain and a dysferlin domain as common structural motifs, as well as Pex28p and Pex29p. In S. cerevisiae, these proteins seem to negatively control peroxisomal size and number (18, 19). Interestingly, Pex30p seems to exhibit species-specific differences in the regulation of peroxisome proliferation. While the lack of Pex30p in S. cerevisiae leads to an increase in the number of normal-sized peroxisomes (18), in Pichia pastoris its absence correlates with the appearance of fewer and clustered peroxisomes (20). Although peroxisomes are highly versatile organelles, under given conditions their total number per cell remains fairly constant owing to the delicate balance of proliferation, inheritance and degradation (21, 22). The question is: what are the molecular mechanisms responsible for the spatiotemporal organization of these events?Here, we present data obtained from a dual approach based on quantitative interaction proteomics using stable isotope labeling with amino acids in cell culture (SILAC) (23, 24) and live-cell imaging, revealing for the first time the dynamic interaction network around Pex30p and its function in the organization of ER-to-peroxisome membrane associations. We report the existence of a macromolecular membrane protein complex that acts as a hub for the regulation of peroxisome proliferation and movement. Our data suggest a direct role for the tubular cortical ER and the reticulon homology proteins Rtn1p, Rtn2p, and Yop1p in the regulation of peroxisome biogenesis. Furthermore, as an initially cortical-ER localized protein that interacts with reticulon homology proteins, Pex30p is shown in this work to establish contacts between ER tubules and peroxisomes and to specifically traffic through the ER. In summary, our data reveal a central role for Pex30p in the formation of ER-to-peroxisomes associations that appear to be involved in the coordination of peroxisome biogenesis and maintenance. 相似文献
11.
Jean‐Sébastien Schonn Jan R. T. Van Weering Ralf Mohrmann Oliver M. Schlüter Thomas C. Südhof Heidi De Wit Matthijs Verhage Jakob B. Sørensen 《Traffic (Copenhagen, Denmark)》2010,11(11):1415-1428
The four Rab3 paralogs A–D are involved in exocytosis, but their mechanisms of action are hard to study due to functional redundancy. Here, we used a quadruple Rab3 knockout (KO) (rab3a, rab3b, rab3c, rab3d null, here denoted as ABCD?/?) mouse line to investigate Rab3 function in embryonic mouse adrenal chromaffin cells by electron microscopy and electrophysiological measurements. We show that in cells from ABCD?/? animals large dense‐core vesicles (LDCVs) are less abundant, while the number of morphologically docked granules is normal. By capacitance measurements, we show that deletion of Rab3s reduces the size of the releasable vesicle pools but does not alter their fusion kinetics, consistent with an altered function in vesicle priming. The sustained release component has a sigmoid shape in ABCD?/? cells when normalized to the releasable pool size, indicating that vesicle priming follows at a higher rate after an initial delay. Rescue experiments showed that short‐term (4–6 h) overexpression of Rab3A or Rab3C suffices to rescue vesicle priming and secretion, but it does not restore the number of secretory vesicles. We conclude that Rab3 proteins play two distinct stimulating roles for LDCV fusion in embryonic chromaffin cells, by facilitating vesicle biogenesis and stabilizing the primed vesicle state. 相似文献
12.
The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658-724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2-1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1-657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1-657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p. 相似文献
13.
Wei Wei Wenjun Zhu Jiasen Cheng Jiatao Xie Bo Li Daohong Jiang Guoqing Li Xianhong Yi Yanping Fu 《Applied and environmental microbiology》2013,79(12):3658-3666
Coniothyrium minitans is a sclerotial parasite of the plant-pathogenic fungus Sclerotinia sclerotiorum, and conidial production and parasitism are two important aspects for commercialization of this biological control agent. To understand the mechanism of conidiation and parasitism at the molecular level, we constructed a transfer DNA (tDNA) insertional library with the wild-type strain ZS-1. A conidiation-deficient mutant, ZS-1TN22803, was uncovered through screening of this library. This mutant could produce pycnidia on potato dextrose agar (PDA), but most were immature and did not bear conidia. Moreover, this mutant lost the ability to parasitize or rot the sclerotia of S. sclerotiorum. Analysis of the tDNA flanking sequences revealed that a peroxisome biogenesis factor 6 (PEX6) homolog of Saccharomyces cerevisiae, named CmPEX6, was disrupted by the tDNA insertion in this mutant. Targeted gene replacement and gene complementation tests confirmed that a null mutation of CmPEX6 was responsible for the phenotype of ZS-1TN22803. Further analysis showed that both ZS-1TN22803 and the targeted replacement mutants could not grow on PDA medium containing oleic acid, and they produced much less nitric oxide (NO) and hydrogen peroxide (H2O2) than wild-type strain ZS-1. The conidiation of ZS-1TN22803 was partially restored by adding acetyl-CoA or glyoxylic acid to the growth media. Our results suggest that fatty acid β-oxidation, reactive oxygen and nitrogen species, and possibly other unknown pathways in peroxisomes are involved in conidiation and parasitism by C. minitans. 相似文献
14.
Pex19p Interacts with Pex3p and Pex10p and Is Essential for Peroxisome Biogenesis in Pichia pastoris 下载免费PDF全文
William B. Snyder Klaas Nico Faber Thibaut J. Wenzel Antonius Koller Georg H. Lüers Linda Rangell Gilbert A. Keller Suresh Subramani 《Molecular biology of the cell》1999,10(6):1745-1761
We report the cloning and characterization of Pichia pastoris PEX19 by complementation of a peroxisome-deficient mutant strain. Import of peroxisomal targeting signal 1- and 2-containing peroxisomal matrix proteins is defective in pex19 mutants. PEX19 encodes a hydrophilic 299-amino acid protein with sequence similarity to Saccharomyces cerevisiae Pex19p and human and Chinese hamster PxF, all farnesylated proteins, as well as hypothetical proteins from Caenorhabditis elegans and Schizosaccharomyces pombe. The farnesylation consensus is conserved in PpPex19p but dispensable for function and appears unmodified under the conditions tested. Pex19p localizes predominantly to the cytosolic fraction. Biochemical and two-hybrid analyses confirmed that Pex19p interacts with Pex3p, as seen in S. cerevisiae, but unexpectedly also with Pex10p. Two-hybrid analysis demonstrated that the amino-terminal 42 amino acids of Pex19p interact with the carboxyl-terminal 335 amino acids of Pex3p. In addition, the extreme carboxyl terminus of Pex19p (67 amino acids) is required for interaction with the amino-terminal 380 amino acids of Pex10p. Biochemical and immunofluorescence microscopy analyses of pex19Delta cells identified the membrane protein Pex3p in peroxisome remnants that were not previously observed in S. cerevisiae. These small vesicular and tubular (early) remnants are morphologically distinct from other Pppex mutant (late) remnants, suggesting that Pex19p functions at an early stage of peroxisome biogenesis. 相似文献
15.
Robert Ruckt?schel Sven Thoms Vadim Sidorovitch Andre Halbach Markos Pechlivanis Rudolf Volkmer Kirill Alexandrov Jürgen Kuhlmann Hanspeter Rottensteiner Ralf Erdmann 《The Journal of biological chemistry》2009,284(31):20885-20896
The conserved CaaX box peroxin Pex19p is known to be modified by farnesylation. The possible involvement of this lipid modification in peroxisome biogenesis, the degree to which Pex19p is farnesylated, and its molecular function are unknown or controversial. We resolve these issues by first showing that the complete pool of Pex19p is processed by farnesyltransferase in vivo and that this modification is independent of peroxisome induction or the Pex19p membrane anchor Pex3p. Furthermore, genomic mutations of PEX19 prove that farnesylation is essential for proper matrix protein import into peroxisomes, which is supposed to be caused indirectly by a defect in peroxisomal membrane protein (PMP) targeting or stability. This assumption is corroborated by the observation that mutants defective in Pex19p farnesylation are characterized by a significantly reduced steady-state concentration of prominent PMPs (Pex11p, Ant1p) but also of essential components of the peroxisomal import machinery, especially the RING peroxins, which were almost depleted from the importomer. In vivo and in vitro, PMP recognition is only efficient when Pex19p is farnesylated with affinities differing by a factor of 10 between the non-modified and wild-type forms of Pex19p. Farnesylation is likely to induce a conformational change in Pex19p. Thus, isoprenylation of Pex19p contributes to substrate membrane protein recognition for the topogenesis of PMPs, and our results highlight the importance of lipid modifications in protein-protein interactions.A large number of eukaryotic intracellular proteins are post-translationally modified by the covalent attachment of either 15 or 20 carbon isoprenoids known as farnesyl or geranylgeranyl, respectively. This process (referred to as protein prenylation) affects lipases, kinases, inositol and protein-tyrosine phosphatases, lamins, and most of the small GTPases (1–3). Protein prenylation was shown to enable reversible association of modified proteins with lipid bilayers and to modulate protein-protein interactions (4–6).The farnesyl group is attached to the cysteine of the C-terminal motif known as the CaaX box, where “a” indicates aliphatic amino acids and X is usually serine, methionine, glutamine, alanine, or threonine (3). Farnesyltransferase (FTase)3 consists of two subunits, the α-subunit and the β-subunit (Ram2p and Ram1p in yeast). The α-subunit is shared by the geranylgeranyl transferase (GGTase I), whereas the β-subunit is unique for FTase (7).The peroxisome biogenesis protein (peroxin) Pex19p is one of a few farnesylated non-GTPases that are conserved between yeast and humans. Pex19p was initially identified as a prenylated protein (PxF) (8, 9) or housekeeping gene product (HK33) (10). A loss-of-function mutation in human PEX19 is associated with complementation group CG-J/CG-14 of Zellweger syndrome (11). In the absence of Pex19p, cells lack functional peroxisomes (11–13). Pex19p is mostly cytosolic and interacts with all peroxisomal membrane proteins (PMPs) analyzed (14–16).Different and not all exclusive models have been proposed for Pex19p function. First, Pex19p might be an import receptor for PMPs that recognizes its substrates in the cytosol and delivers them to the peroxisomal membrane (15, 17, 18). This function would be analogous to that of the peroxisomal import receptors Pex5p and Pex7p, which recognize and deliver matrix proteins with PTS1 (peroxisomal targeting signal type 1) and PTS2 to peroxisomes (19). Second, Pex19p might act as a PMP chaperone that prevents newly synthesized PMPs from aggregation and degradation in the cytosol (17, 20). Third, Pex19p might act as a PMP membrane insertion factor (14, 16). Fourth, Pex19p might be required as an association/dissociation factor of membrane protein complexes (21) and has been reported to be required for the targeting of Pex3p from the ER to the peroxisomal membrane (22). Finally, Pex19p function is dependent on Pex3p, which serves as a docking factor at the peroxisomal membrane (12, 22–24). All models agree on the importance of PMP recognition for Pex19p function (25).Pex19p shows only a moderate degree of sequence conservation, with less than 20% amino acid identity between yeast and human Pex19p. Its CaaX box, however, has been retained throughout evolution (see Fig. 1). Information on the status and the requirement of Pex19p farnesylation has so far been available only through often conflicting side observations. Mammalian PEX19 was described to be partially farnesylated in CHO-K1 cells (11), but other studies with human fibroblasts challenged the relevance of Pex19p farnesylation (15, 26). It was speculated that in Saccharomyces cerevisiae, farnesylation is required for an essential aspect of Pex19p function (12). This notion was recently contradicted (27). Work on other yeasts similarly suggested that farnesylation would be dispensable for Pex19p function (13, 28, 29).Open in a separate windowFIGURE 1.Pex19p is completely farnesylated in vivo, independent of peroxisome induction and Pex3p. A and B, Pex19p is fully modified by yeast FTase in vivo. Whole cell lysates from non-induced cells of the indicated strains were analyzed by immunoblotting. Blots were probed with anti-Pex19p antibodies. The non-farnesylated form of Pex19p of a Δram1 mutant (arrowhead) cannot be detected in extracts from wild-type yeast (arrow) (A), whereas it reappears after reintroduction of Ram1p (B). C, the yeast farnesylation machinery can be saturated by overexpression of GST-Pex19p. A Coomassie-stained gel of purified farnesylated and non-farnesylated Pex19p is shown. GST-Pex19p was expressed under control of a copper-inducible promoter in Δpex19 and Δram1 strains and isolated by affinity chromatography. In Δram1 (right), only the non-farnesylated GST-Pex19p can be detected. In Δpex19 (left) two bands appear, corresponding to non-farnesylated GST-Pex19p (upper band) and farnesylated GST-Pex19p (lower band). D, Pex19p farnesylation levels are independent of peroxisome induction and are not affected by the absence of the Pex19p membrane anchor Pex3p. Cells were grown on YPD medium and, where indicated, washed and grown on 0.1% oleate medium for 17 h for peroxisome induction. Lysates were fractionated by centrifugation (20,000 × g, 1 h, 4 °C) and analyzed as in A. Blots were probed with antibodies against Pex19p. E, evolutionary conservation of the Pex19p farnesylation site in fungi, plant, and metazoa.In this study, we determined the in vivo farnesylation status of Pex19p and its dependence on peroxisome induction and on Pex3p. We discovered that Pex19p is fully modified by FTase and investigated whether Pex19p farnesylation is required for PMP recognition and stability. By peptide blots, two-hybrid analysis, and fluorescence polarization titration, we showed that farnesylation increases the affinity for PMPs by a factor of about 10. Last, we provide evidence that the interaction between farnesylated Pex19p and PMPs is achieved through a farnesylation-induced structural change in Pex19p rather than through direct farnesyl-PMP interaction. Our results exemplify the biological relevance of isoprenylation-dependent protein-protein interactions. 相似文献
16.
17.
Der3p/Hrd1p Is Required for Endoplasmic Reticulum-associated
Degradation of Misfolded Lumenal and Integral Membrane Proteins 总被引:10,自引:7,他引:10 下载免费PDF全文
Javier Bordallo Richard K. Plemper Andreas Finger Dieter H. Wolf 《Molecular biology of the cell》1998,9(1):209-222
We have studied components of the endoplasmic reticulum (ER) proofreading and degradation system in the yeast Saccharomyces cerevisiae. Using a der3–1 mutant defective in the degradation of a mutated lumenal protein, carboxypeptidase yscY (CPY*), a gene was cloned which encodes a 64-kDa protein of the ER membrane. Der3p was found to be identical with Hrd1p, a protein identified to be necessary for degradation of HMG-CoA reductase. Der3p contains five putative transmembrane domains and a long hydrophilic C-terminal tail containing a RING-H2 finger domain which is oriented to the ER lumen. Deletion of DER3 leads to an accumulation of CPY* inside the ER due to a complete block of its degradation. In addition, a DER3 null mutant allele suppresses the temperature-dependent growth phenotype of a mutant carrying the sec61–2 allele. This is accompanied by the stabilization of the Sec61–2 mutant protein. In contrast, overproduction of Der3p is lethal in a sec61–2 strain at the permissive temperature of 25°C. A mutant Der3p lacking 114 amino acids of the lumenal tail including the RING-H2 finger domain is unable to mediate degradation of CPY* and Sec61–2p. We propose that Der3p acts prior to retrograde transport of ER membrane and lumenal proteins to the cytoplasm where they are subject to degradation via the ubiquitin-proteasome system. Interestingly, in ubc6-ubc7 double mutants, CPY* accumulates in the ER, indicating the necessity of an intact cytoplasmic proteolysis machinery for retrograde transport of CPY*. Der3p might serve as a component programming the translocon for retrograde transport of ER proteins, or it might be involved in recognition through its lumenal RING-H2 motif of proteins of the ER that are destined for degradation. 相似文献
18.
19.
20.