首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Motivation: Finding a good network null model for protein–proteininteraction (PPI) networks is a fundamental issue. Such a modelwould provide insights into the interplay between network structureand biological function as well as into evolution. Also, network(graph) models are used to guide biological experiments anddiscover new biological features. It has been proposed thatgeometric random graphs are a good model for PPI networks. Ina geometric random graph, nodes correspond to uniformly randomlydistributed points in a metric space and edges (links) existbetween pairs of nodes for which the corresponding points inthe metric space are close enough according to some distancenorm. Computational experiments have revealed close matchesbetween key topological properties of PPI networks and geometricrandom graph models. In this work, we push the comparison furtherby exploiting the fact that the geometric property can be testedfor directly. To this end, we develop an algorithm that takesPPI interaction data and embeds proteins into a low-dimensionalEuclidean space, under the premise that connectivity informationcorresponds to Euclidean proximity, as in geometric-random graphs.We judge the sensitivity and specificity of the fit by computingthe area under the Receiver Operator Characteristic (ROC) curve.The network embedding algorithm is based on multi-dimensionalscaling, with the square root of the path length in a networkplaying the role of the Euclidean distance in the Euclideanspace. The algorithm exploits sparsity for computational efficiency,and requires only a few sparse matrix multiplications, givinga complexity of O(N2) where N is the number of proteins. Results: The algorithm has been verified in the sense that itsuccessfully rediscovers the geometric structure in artificiallyconstructed geometric networks, even when noise is added byre-wiring some links. Applying the algorithm to 19 publiclyavailable PPI networks of various organisms indicated that:(a) geometric effects are present and (b) two-dimensional Euclideanspace is generally as effective as higher dimensional Euclideanspace for explaining the connectivity. Testing on a high-confidenceyeast data set produced a very strong indication of geometricstructure (area under the ROC curve of 0.89), with this networkbeing essentially indistinguishable from a noisy geometric network.Overall, the results add support to the hypothesis that PPInetworks have a geometric structure. Availability: MATLAB code implementing the algorithm is availableupon request. Contact: natasha{at}ics.uci.edu Associate Editor: Olga Troyanskaya  相似文献   

2.
Various methods have been recently employed to characterise the structure of biological networks. In particular, the concept of network motif and the related one of coloured motif have proven useful to model the notion of a functional/evolutionary building block. However, algorithms that enumerate all the motifs of a network may produce a very large output, and methods to decide which motifs should be selected for downstream analysis are needed. A widely used method is to assess if the motif is exceptional, that is, over- or under-represented with respect to a null hypothesis. Much effort has been put in the last thirty years to derive -values for the frequencies of topological motifs, that is, fixed subgraphs. They rely either on (compound) Poisson and Gaussian approximations for the motif count distribution in Erdös-Rényi random graphs or on simulations in other models. We focus on a different definition of graph motifs that corresponds to coloured motifs. A coloured motif is a connected subgraph with fixed vertex colours but unspecified topology. Our work is the first analytical attempt to assess the exceptionality of coloured motifs in networks without any simulation. We first establish analytical formulae for the mean and the variance of the count of a coloured motif in an Erdös-Rényi random graph model. Using simulations under this model, we further show that a Pólya-Aeppli distribution better approximates the distribution of the motif count compared to Gaussian or Poisson distributions. The Pólya-Aeppli distribution, and more generally the compound Poisson distributions, are indeed well designed to model counts of clumping events. Altogether, these results enable to derive a -value for a coloured motif, without spending time on simulations.  相似文献   

3.
MOTIVATION: The structural interaction of proteins and their domains in networks is one of the most basic molecular mechanisms for biological cells. Topological analysis of such networks can provide an understanding of and solutions for predicting properties of proteins and their evolution in terms of domains. A single paradigm for the analysis of interactions at different layers, such as domain and protein layers, is needed. RESULTS: Applying a colored vertex graph model, we integrated two basic interaction layers under a unified model: (1) structural domains and (2) their protein/complex networks. We identified four basic and distinct elements in the model that explains protein interactions at the domain level. We searched for motifs in the networks to detect their topological characteristics using a pruning strategy and a hash table for rapid detection. We obtained the following results: first, compared with a random distribution, a substantial part of the protein interactions could be explained by domain-level structural interaction information. Second, there were distinct kinds of protein interaction patterns classified by specific and distinguishable numbers of domains. The intermolecular domain interaction was the most dominant protein interaction pattern. Third, despite the coverage of the protein interaction information differing among species, the similarity of their networks indicated shared architectures of protein interaction network in living organisms. Remarkably, there were only a few basic architectures in the model (>10 for a 4-node network topology), and we propose that most biological combinations of domains into proteins and complexes can be explained by a small number of key topological motifs. CONTACT: doheon@kaist.ac.kr.  相似文献   

4.
5.
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology—random networks of Erdős-Rényi type and networks with highly interconnected hubs—we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.  相似文献   

6.
Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.  相似文献   

7.
Directed random graph models frequently are used successfully in modeling the population dynamics of networks of cortical neurons connected by chemical synapses. Experimental results consistently reveal that neuronal network topology is complex, however, in the sense that it differs statistically from a random network, and differs for classes of neurons that are physiologically different. This suggests that complex network models whose subnetworks have distinct topological structure may be a useful, and more biologically realistic, alternative to random networks. Here we demonstrate that the balanced excitation and inhibition frequently observed in small cortical regions can transiently disappear in otherwise standard neuronal-scale models of fluctuation-driven dynamics, solely because the random network topology was replaced by a complex clustered one, whilst not changing the in-degree of any neurons. In this network, a small subset of cells whose inhibition comes only from outside their local cluster are the cause of bistable population dynamics, where different clusters of these cells irregularly switch back and forth from a sparsely firing state to a highly active state. Transitions to the highly active state occur when a cluster of these cells spikes sufficiently often to cause strong unbalanced positive feedback to each other. Transitions back to the sparsely firing state rely on occasional large fluctuations in the amount of non-local inhibition received. Neurons in the model are homogeneous in their intrinsic dynamics and in-degrees, but differ in the abundance of various directed feedback motifs in which they participate. Our findings suggest that (i) models and simulations should take into account complex structure that varies for neuron and synapse classes; (ii) differences in the dynamics of neurons with similar intrinsic properties may be caused by their membership in distinctive local networks; (iii) it is important to identify neurons that share physiological properties and location, but differ in their connectivity.  相似文献   

8.
In the past two decades, significant advances have been made in understanding the structural and functional properties of biological networks, via graph-theoretic analysis. In general, most graph-theoretic studies are conducted in the presence of serious uncertainties, such as major undersampling of the experimental data. In the specific case of neural systems, however, a few moderately robust experimental reconstructions have been reported, and these have long served as fundamental prototypes for studying connectivity patterns in the nervous system. In this paper, we provide a comparative analysis of these “historical” graphs, both in their directed (original) and symmetrized (a common preprocessing step) forms, and provide a set of measures that can be consistently applied across graphs (directed or undirected, with or without self-loops). We focus on simple structural characterizations of network connectivity and find that in many measures, the networks studied are captured by simple random graph models. In a few key measures, however, we observe a marked departure from the random graph prediction. Our results suggest that the mechanism of graph formation in the networks studied is not well captured by existing abstract graph models in their first- and second-order connectivity.  相似文献   

9.
Ecological interaction networks, such as those describing the mutualistic interactions between plants and their pollinators or between plants and their frugivores, exhibit non‐random structural properties that cannot be explained by simple models of network formation. One factor affecting the formation and eventual structure of such a network is its evolutionary history. We argue that this, in many cases, is closely linked to the evolutionary histories of the species involved in the interactions. Indeed, empirical studies of interaction networks along with the phylogenies of the interacting species have demonstrated significant associations between phylogeny and network structure. To date, however, no generative model explaining the way in which the evolution of individual species affects the evolution of interaction networks has been proposed. We present a model describing the evolution of pairwise interactions as a branching Markov process, drawing on phylogenetic models of molecular evolution. Using knowledge of the phylogenies of the interacting species, our model yielded a significantly better fit to 21% of a set of plant–pollinator and plant–frugivore mutualistic networks. This highlights the importance, in a substantial minority of cases, of inheritance of interaction patterns without excluding the potential role of ecological novelties in forming the current network architecture. We suggest that our model can be used as a null model for controlling evolutionary signals when evaluating the role of other factors in shaping the emergence of ecological networks.  相似文献   

10.
It has recently been discovered that many biological systems, when represented as graphs, exhibit a scale-free topology. One such system is the set of structural relationships among protein domains. The scale-free nature of this and other systems has previously been explained using network growth models that, although motivated by biological processes, do not explicitly consider the underlying physics or biology. In this work we explore a sequence-based model for the evolution protein structures and demonstrate that this model is able to recapitulate the scale-free nature observed in graphs of real protein structures. We find that this model also reproduces other statistical feature of the protein domain graph. This represents, to our knowledge, the first such microscopic, physics-based evolutionary model for a scale-free network of biological importance and as such has strong implications for our understanding of the evolution of protein structures and of other biological networks.  相似文献   

11.
MOTIVATION: The functioning of biological networks depends in large part on their complex underlying structure. When studying their systemic nature many modeling approaches focus on identifying simple, but prominent, structural components, as such components are easier to understand, and, once identified, can be used as building blocks to succinctly describe the network. RESULTS: In recent social network studies, exponential random graph models have been used extensively to model global social network structure as a function of their 'local features'. Starting from those studies, we describe the exponential random graph models and demonstrate their utility in modeling the architecture of biological networks as a function of the prominence of local features. We argue that the flexibility, in terms of the number of available local feature choices, and scalability, in terms of the network sizes, make this approach ideal for statistical modeling of biological networks. We illustrate the modeling on both genetic and metabolic networks and provide a novel way of classifying biological networks based on the prevalence of their local features.  相似文献   

12.
MOTIVATION: Algorithmic and modeling advances in the area of protein-protein interaction (PPI) network analysis could contribute to the understanding of biological processes. Local structure of networks can be measured by the frequency distribution of graphlets, small connected non-isomorphic induced subgraphs. This measure of local structure has been used to show that high-confidence PPI networks have local structure of geometric random graphs. Finding graphlets exhaustively in a large network is computationally intensive. More complete PPI networks, as well as PPI networks of higher organisms, will thus require efficient heuristic approaches. RESULTS: We propose two efficient and scalable heuristics for finding graphlets in high-confidence PPI networks. We show that both PPI and their model geometric random networks, have defined boundaries that are sparser than the 'inner parts' of the networks. In addition, these networks exhibit 'uniformity' of local structure inside the networks. Our first heuristic exploits these two structural properties of PPI and geometric random networks to find good estimates of graphlet frequency distributions in these networks up to 690 times faster than the exhaustive searches. Our second heuristic is a variant of a more standard sampling technique and it produces accurate approximate results up to 377 times faster than the exhaustive searches. We indicate how the combination of these approaches may result in an even better heuristic. AVAILABILITY: Supplementary information is available at http://www.cs.toronto.edu/~natasha/BIOINF-2005-0946/Supplementary.pdf. Software implementing the algorithms is available at http://www.cs.toronto.edu/~natasha/BIOINF-2005-0946/estimate_grap-hlets.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

13.
Protein evolution within a structural space   总被引:2,自引:1,他引:1       下载免费PDF全文
Understanding of the evolutionary origins of protein structures represents a key component of the understanding of molecular evolution as a whole. Here we seek to elucidate how the features of an underlying protein structural “space” might impact protein structural evolution. We approach this question using lattice polymers as a completely characterized model of this space. We develop a measure of structural comparison of lattice structures that is analogous to the one used to understand structural similarities between real proteins. We use this measure of structural relatedness to create a graph of lattice structures and compare this graph (in which nodes are lattice structures and edges are defined using structural similarity) to the graph obtained for real protein structures. We find that the graph obtained from all compact lattice structures exhibits a distribution of structural neighbors per node consistent with a random graph. We also find that subgraphs of 3500 nodes chosen either at random or according to physical constraints also represent random graphs. We develop a divergent evolution model based on the lattice space which produces graphs that, within certain parameter regimes, recapitulate the scale-free behavior observed in similar graphs of real protein structures.  相似文献   

14.
15.
As an effective modeling, analysis and computational tool, graph theory is widely used in biological mathematics to deal with various biology problems. In the field of microbiology, graph can express the molecular structure, where cell, gene or protein can be denoted as a vertex, and the connect element can be regarded as an edge. In this way, the biological activity characteristic can be measured via topological index computing in the corresponding graphs. In our article, we mainly study the biology features of biological networks in terms of eccentric topological indices computation. By means of graph structure analysis and distance calculating, the exact expression of several important eccentric related indices of hypertree network and X-tree are determined. The conclusions we get in this paper illustrate that the bioengineering has the promising application prospects.  相似文献   

16.
An advanced graph theoretical approach is introduced that enables a higher level of functional interpretation of samples of directed networks with identical fixed pairwise different vertex labels that are drawn from a particular population. Compared to the analysis of single networks, their investigation promises to yield more detailed information about the represented system. Often patterns of directed edges in sample element networks are too intractable for a direct evaluation and interpretation. The new approach addresses the problem of simplifying topological information and characterizes such a sample of networks by finding its locatable characteristic topological patterns. These patterns, essentially sample-specific network motifs with vertex labeling, might represent the essence of the intricate topological information contained in all sample element networks and provides as well a means of differentiating network samples. Central to the accurateness of this approach is the null model and its properties, which is needed to assign significance to topological patterns. As a proof of principle the proposed approach has been applied to the analysis of networks that represent brain connectivity before and during painful stimulation in patients with major depression and in healthy subjects. The accomplished reduction of topological information enables a cautious functional interpretation of the altered neuronal processing of pain in both groups.  相似文献   

17.
Complex networks serve as generic models for many biological systems that have been shown to share a number of common structural properties such as power-law degree distribution and small-worldness. Real-world networks are composed of building blocks called motifs that are indeed specific subgraphs of (usually) small number of nodes. Network motifs are important in the functionality of complex networks, and the role of some motifs such as feed-forward loop in many biological networks has been heavily studied. On the other hand, many biological networks have shown some degrees of robustness in terms of their efficiency and connectedness against failures in their components. In this paper we investigated how random and systematic failures in the edges of biological networks influenced their motif structure. We considered two biological networks, namely, protein structure network and human brain functional network. Furthermore, we considered random failures as well as systematic failures based on different strategies for choosing candidate edges for removal. Failure in the edges tipping to high degree nodes had the most destructive role in the motif structure of the networks by decreasing their significance level, while removing edges that were connected to nodes with high values of betweenness centrality had the least effect on the significance profiles. In some cases, the latter caused increase in the significance levels of the motifs.  相似文献   

18.
We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure.  相似文献   

19.
The brain''s structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a “fingerprint”. Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the “uncertainty” of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.  相似文献   

20.
MOTIVATION: Much of the large-scale molecular data from living cells can be represented in terms of networks. Such networks occupy a central position in cellular systems biology. In the protein-protein interaction (PPI) network, nodes represent proteins and edges represent connections between them, based on experimental evidence. As PPI networks are rich and complex, a mathematical model is sought to capture their properties and shed light on PPI evolution. The mathematical literature contains various generative models of random graphs. It is a major, still largely open question, which of these models (if any) can properly reproduce various biologically interesting networks. Here, we consider this problem where the graph at hand is the PPI network of Saccharomyces cerevisiae. We are trying to distinguishing between a model family which performs a process of copying neighbors, represented by the duplication-divergence (DD) model, and models which do not copy neighbors, with the Barabási-Albert (BA) preferential attachment model as a leading example. RESULTS: The observed property of the network is the distribution of maximal bicliques in the graph. This is a novel criterion to distinguish between models in this area. It is particularly appropriate for this purpose, since it reflects the graph's growth pattern under either model. This test clearly favors the DD model. In particular, for the BA model, the vast majority (92.9%) of the bicliques with both sides ≥4 must be already embedded in the model's seed graph, whereas the corresponding figure for the DD model is only 5.1%. Our results, based on the biclique perspective, conclusively show that a na?ve unmodified DD model can capture a key aspect of PPI networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号