首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
tRNA cleavage is a conserved response to oxidative stress in eukaryotes   总被引:4,自引:0,他引:4  
Recent results have identified a diversity of small RNAs in a wide range of organisms. In this work, we demonstrate that Saccharomyces cerevisiae contains a small RNA population consisting primarily of tRNA halves and rRNA fragments. Both 5′ and 3′ fragments of tRNAs are detectable by Northern blot analysis, suggesting a process of endonucleolytic cleavage. tRNA and rRNA fragment production in yeast is most pronounced during oxidative stress conditions, especially during entry into stationary phase. Similar tRNA fragments are also observed in human cell lines and in plants during oxidative stress. These results demonstrate that tRNA cleavage is a conserved aspect of the response to oxidative stress.  相似文献   

2.
3.
Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.  相似文献   

4.
酿酒酵母细胞在生长过程中会不断受到内外环境的氧化攻击。活性氧族物质的累积能够损害细胞中的脂质、DNA和蛋白质,从而会影响细胞的正常功能,严重者将造成细胞死亡。为了对抗氧化胁迫,酵母细胞在不断地适应过程中,进化出了较为完整的保护机制,呈现出多水平多层次的应激应答反应。细胞在非酶水平、蛋白质水平和基因水平上协同作用,共同完成了活性氧族物质的清除和胁迫信号的传递应答。本文对酵母细胞在氧化胁迫环境下的应答调控做了简要综述。  相似文献   

5.
N Luhtala  R Parker 《PloS one》2012,7(7):e41111
T2 ribonucleases are conserved nucleases that affect a variety of processes in eukaryotic cells including the regulation of self-incompatibility by S-RNases in plants, modulation of host immune cell responses by viral and schistosome T2 enzymes, and neurological development and tumor progression in humans. These roles for RNaseT2's can be due to catalytic or catalytic-independent functions of the molecule. Despite this broad importance, the features of RNaseT2 proteins that modulate catalytic and catalytic-independent functions are poorly understood. Herein, we analyze the features of Rny1 in Saccharomyces cerevisiae to determine the requirements for cleaving tRNA in vivo and for inhibiting cellular growth in a catalytic-independent manner. We demonstrate that catalytic-independent inhibition of growth is a combinatorial property of the protein and is affected by a fungal-specific C-terminal extension, the conserved catalytic core, and the presence of a signal peptide. Catalytic functions of Rny1 are independent of the C-terminal extension, are affected by many mutations in the catalytic core, and also require a signal peptide. Biochemical flotation assays reveal that in rny1Δ cells, some tRNA molecules associate with membranes suggesting that cleavage of tRNAs by Rny1 can involve either tRNA association with, or uptake into, membrane compartments.  相似文献   

6.
Programmed cell death is a term which refers to a genetic decision of self-killing or suicide of a cell. Programmed cell death is not restricted to multicellular organisms and was described in a wide range of unicellular eukaryotes, indicating phylogenetically conserved functions, that participate in an adaptive response to cellular stress. Here we review and discuss our observations recently published in the EMBO Journal1, that non-dividing fission yeast, Schizosaccharomyces pombe, exhibits a DNA damage response leading to cell death. We found that Tdp1 protects quiescent S. pombe cells against oxidative DNA damage. Tdp1 is a well-conserved tyrosyl-DNA phosphodiesterase required for single-strand break DNA repair, the mutation of Tdp1 is responsible for the recessively inherited syndrome spinocerebellar ataxia with axonal neuropathy (SCAN1) in humans. We found that tdp1 mutant yeast cells grow, as well as the wild-type cells, during the vegetative state, but progressively die in the quiescent state. We showed that, in the absence of Tdp1, the accumulation of unrepaired oxidative DNA damage triggers a genetic response, leading to checkpoint-dependent (ATM/ATR) nuclear DNA degradation, reminiscent of apoptosis. Our results indicate that the reactive oxygen species (ROS) produced during mitochondrial respiration are the main DNA damaging agents in the physiological quiescent state.  相似文献   

7.
Oxidative stress-induced cell damage is an important component of many diseases and ageing. In eukaryotes, activation of JNK/p38 stress-activated protein kinase (SAPK) signaling pathways is critical for the cellular response to stress. 2-Cys peroxiredoxins (2-Cys Prx) are highly conserved, extremely abundant antioxidant enzymes that catalyze the breakdown of peroxides to protect cells from oxidative stress. Here we reveal that Tpx1, the single 2-Cys Prx in Schizosaccharomyces pombe, is required for the peroxide-induced activation of the p38/JNK homolog, Sty1. Tpx1 activates Sty1, downstream of previously identified redox sensors, by a mechanism that involves formation of a peroxide-induced disulphide complex between Tpx1 and Sty1. We have identified conserved cysteines in Tpx1 and Sty1 that are essential for normal peroxide-induced Tpx1-Sty1 disulphide formation and Tpx1-dependent regulation of peroxide-induced Sty1 activation. Thus we provide new insight into the response of SAPKs to diverse stimuli by revealing a mechanism for SAPK activation specifically by oxidative stress.  相似文献   

8.
9.
Cell fate is determined by the balance of conserved molecular mechanisms regulating death (apoptosis) and survival (autophagy). Autophagy is a process by which cells recycle their organelles and macromolecules through degradation within the vacuole in yeast and plants, and lysosome in metazoa. In the yeast Schizosaccharomyces pombe, autophagy is strongly induced under nitrogen starvation and in aging cells. Previously, we demonstrated that calnexin (Cnx1p), a highly conserved transmembrane chaperone of the endoplasmic reticulum (ER), regulates apoptosis under ER stress or inositol starvation. Moreover, we showed that in stationary phase, Cnx1p is cleaved into two moieties, L_Cnx1p and S_Cnx1p. Here, we show that the processing of Cnx1p is regulated by autophagy, induced by nitrogen starvation or cell aging. The cleavage of Cnx1p involves two vacuolar proteases: Isp6, which is essential for autophagy, and its paralogue Psp3. Blocking autophagy through the knockout of autophagy-related genes (atg) results in inhibition of both, the cleavage and the trafficking of Cnx1p from the ER to the vacuole. We demonstrate that Cnx1p is required for cell survival under nitrogen-starvation and in chronological aging cultures. The death of the mini_cnx1 mutant (overlapping S_cnx1p) cells is accompanied by accumulation of high levels of reactive-oxygen species (ROS), a slowdown in endocytosis and severe cell-wall defects. Moreover, mutant cells expressing only S_Cnx1p showed cell wall defects. Co-expressing mutant overlapping the L_Cnx1p and S_Cnx1p cleavage products reverses the death, ROS phenotype and cell wall defect to wild-type levels. As it is involved in both apoptosis and autophagy, Cnx1p could be a nexus for the crosstalk between these pro-death and pro-survival mechanisms. Ours, and observations in mammalian systems, suggest that the multiple roles of calnexin depend on its sub-cellular localization and on its cleavage. The use of S. pombe should assist in further shedding light on the multiple roles of calnexin.  相似文献   

10.
11.
12.
To further elucidate the impact of fermentative stress on Saccharomyces cerevisiae wine strains, we have here evaluated markers of oxidative stress, oxidative damage and antioxidant response in four oenological strains of S. cerevisiae, relating these to membrane integrity, ethanol production and cell viability during fermentation in high-sugar-containing medium. The cells were sampled at different fermentation stages and analysed by flow cytometry to evaluate membrane integrity and accumulation of reactive oxygen species (ROS). At the same time, catalase and superoxide dismutase activities, trehalose accumulation, and protein carbonylation and degradation were measured. The results indicate that the stress conditions occurring during hypoxic fermentation in high-sugar-containing medium result in the production of ROS and trigger an antioxidant response. This involves superoxide dismutase and trehalose for the protection of cell structures from oxidative damage, and protein catabolism for the removal of damaged proteins. Cell viability, membrane integrity and ethanol production depend on the extent of oxidative damage to cellular components. This is, in turn, related to the ‘fitness’ of each strain, which depends on the contribution of individual cells to ROS accumulation and scavenging. These findings highlight that the differences in individual cell resistances to ROS contribute to the persistence of wine strains during growth under unfavourable culture conditions, and they provide further insights into our understanding of yeast behaviour during industrial fermentation.  相似文献   

13.
The tumor suppressor protein p53 activates growth arrest and proapoptotic genes in response to DNA damage. It is known that negative feedback by p21(Cip1/Waf1/Sdi1) represses p53-dependent transactivation of PUMA. The current study investigates PUMA feedback on p53 during oxidative stress from hyperoxia and the subsequent effects on cell survival mediated through p21 and Bcl-X(L). Deletion of PUMA in HCT116 colon carcinoma cells increased levels of p53 and p21, resulting in a larger G(1) population during hyperoxia. P21-dependent increase in Bcl-X(L) levels protected PUMA-deficient cells against hyperoxic cell death. Bax and Bak were both able to promote hyperoxic cell death. Bcl-X(L) protection against hyperoxic death was lost in cells lacking Bax, not PUMA, suggesting that Bcl-X(L) acts to inhibit Bax-dependent death. These results indicate that PUMA exerts a negative feedback on p53 and p21, leading to p21-dependent growth suppressive and survival changes. Enhanced survival was associated with increased Bcl-X(L) to block Bax activated cell death during oxidative stress.  相似文献   

14.
Mammalian NAD(P)H:quinone oxidoreductases such as human NQO1 act as inducers of apoptosis. Quinone reductases generated interest over the last decade due to their proposed function in the oxidative stress response. Furthermore, human NQO1 was reported to regulate p53 stability and p53-dependent apoptosis through regulation of cellular oxidation–reduction events. In this study, we have used low concentrations of hydrogen peroxide (0.4 and 0.6 mM) to induce apoptosis-like cell death in wild type, an LOT6 overexpressing and a Δ lot6 yeast strain to monitor cell survival. Using this approach, we demonstrate that yeast quinone reductase Lot6p, an orthologue of mammalian quinone reductases, plays a pivotal role in apoptosis-like cell death in Saccharomyces cerevisiae . Overexpression of LOT6 results in enhanced cell death, as shown by an investigation of the morphological hallmarks of apoptosis-like fragmentation of DNA and externalization of phosphatidylserine, whereas the deletion strain displays a deficiency in apoptosis-like cell death as compared with the wild type. Thus, we propose that Lot6p is directly involved in the control of the apoptosis-like cell death in yeast.  相似文献   

15.
Reactive oxygen species (ROS) are critical molecules produced as a consequence of aerobic respiration. It is essential for cells to control the production and activity of such molecules in order to protect the genome and regulate cellular processes such as stress response and apoptosis. Mitochondria are the major source of ROS within the cell, and as a result, numerous proteins have evolved to prevent or repair oxidative damage in this organelle. The recently discovered OXR1 gene family represents a set of conserved eukaryotic genes. Previous studies of the yeast OXR1 gene indicate that it functions to protect cells from oxidative damage. In this report, we show that human and yeast OXR1 genes are induced by heat and oxidative stress and that their proteins localize to the mitochondria and function to protect against oxidative damage. We also demonstrate that mitochondrial localization is required for Oxr1 protein to prevent oxidative damage.  相似文献   

16.
17.
The p75 neurotrophin receptor (p75NTR) mediates the death of specific populations of neurons during the development of the nervous system or after cellular injury. The receptor has also been implicated as a contributor to neurodegeneration caused by numerous pathological conditions. Because many of these conditions are associated with increases in reactive oxygen species, we investigated whether p75NTR has a role in neurodegeneration in response to oxidative stress. Here we demonstrate that p75NTR signaling is activated by 4-hydroxynonenal (HNE), a lipid peroxidation product generated naturally during oxidative stress. Exposure of sympathetic neurons to HNE resulted in neurite degeneration and apoptosis. However, these effects were reduced markedly in neurons from p75NTR−/− mice. The neurodegenerative effects of HNE were not associated with production of neurotrophins and were unaffected by pretreatment with a receptor-blocking antibody, suggesting that oxidative stress activates p75NTR via a ligand-independent mechanism. Previous studies have established that proteolysis of p75NTR by the metalloprotease TNFα-converting enzyme and γ-secretase is necessary for p75NTR-mediated apoptotic signaling. Exposure of sympathetic neurons to HNE resulted in metalloprotease- and γ-secretase-dependent cleavage of p75NTR. Pharmacological blockade of p75NTR proteolysis protected sympathetic neurons from HNE-induced neurite degeneration and apoptosis, suggesting that cleavage of p75NTR is necessary for oxidant-induced neurodegeneration. In vivo, p75NTR−/− mice exhibited resistance to axonal degeneration associated with oxidative injury following administration of the neurotoxin 6-hydroxydopamine. Together, these data suggest a novel mechanism linking oxidative stress to ligand-independent cleavage of p75NTR, resulting in axonal fragmentation and neuronal death.  相似文献   

18.

Background

HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability.

Results

A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8.

Conclusions

This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.  相似文献   

19.
Sphingolipid signaling plays an important role in the regulation of central cellular processes, including cell growth, survival, and differentiation. Many of the essential pathways responsible for sphingolipid biogenesis, and key cellular responses to changes in sphingolipid balance, are conserved between mammalian and yeast cells. Here we demonstrate a novel function for the survival factor Svf1p in the yeast sphingolipid pathway and provide evidence that Svf1p regulates the generation of a specific subset of phytosphingosine. Genetic analyses suggest that Svf1p acts in concert with Lcb4p and Lcb3p to generate a localized pool of phytosphingosine distinct from phytosphingosine generated by Sur2p. This subset is implicated in cellular responses to stress, as loss of SVF1 is associated with defects in the diauxic shift and the oxidative stress response. A genetic interaction between SVF1 and SUR2 demonstrates that both factors are required for optimal growth and survival, and phenotypic similarities between svf1delta sur2delta and ypk1delta suggest that pathways controlled by Svf1p and Sur2p converge on a signaling cascade regulated by Ypk1p. Loss of YPK1 together with disruption of either SVF1 or SUR2 is lethal. Together, these data suggest that compartmentalized generation of distinct intracellular subsets of sphingoid bases may be critical for activation of signaling pathways that control cell growth and survival.  相似文献   

20.
Organisms exposed to reactive oxygen species, generated endogenously during respiration or by environmental conditions, undergo oxidative stress. Stress response can either repair the damage or activate one of the programmed cell death (PCD) mechanisms, for example apoptosis, and finally end in cell death. One striking characteristic, which accompanies apoptosis in both vertebrates and yeast, is a fragmentation of cellular DNA and mammalian apoptosis is often associated with degradation of different RNAs. We show that in yeast exposed to stimuli known to induce apoptosis, such as hydrogen peroxide, acetic acid, hyperosmotic stress and ageing, two large subunit ribosomal RNAs, 25S and 5.8S, became extensively degraded with accumulation of specific intermediates that differ slightly depending on cell death conditions. This process is most likely endonucleolytic, is correlated with stress response, and depends on the mitochondrial respiratory status: rRNA is less susceptible to degradation in respiring cells with functional defence against oxidative stress. In addition, RNA fragmentation is independent of two yeast apoptotic factors, metacaspase Yca1 and apoptosis-inducing factor Aif1, but it relies on the apoptotic chromatin condensation induced by histone H2B modifications. These data describe a novel phenotype for certain stress- and ageing-related PCD pathways in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号