首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肉桂醇脱氢酶(CAD)是木质素合成途径的关键酶之一,它作用于木质素单体生物合成的最后一步。重点综述了肉桂醇脱氢酶(CAD)的在基因家族方面,基因调控方面以及蛋白结晶方面的研究进展,讨论了存在的问题并提出了相关策略。  相似文献   

2.
3.
Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content.  相似文献   

4.
5.
6.
Russian Journal of Bioorganic Chemistry - Bioluminescence is a phenomenon of light emission resulting from oxidation of a substrate, luciferin, catalyzed by the enzyme luciferase. The fungus...  相似文献   

7.
Cell wall activities which are related to the final stages oflignin biosynthesis, that is the generation of hydrogen peroxideand peroxidase activity, were investigated using biochemicaland histochemical methods. Peroxidases involved in both reactionsappeared to be restricted to lignifying tissues. Isolated cellwalls exhibited a very high affinity for syringaldazine. Cellwalls were able, in vitro as well as in vivo, to oxidize guaiacolin the absence of H2O2 when NADH was present in the incubationmedium together with p-coumarate and MnCl2 as cofactors. Theorigin of the NADH used to form H2O2 is discussed. Key words: Lignin biosynthesis, Oxidative polymerization, Peroxidases  相似文献   

8.
Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 Å, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme''s preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies.  相似文献   

9.
10.
Sharon A  Fuchs Y  Anderson JD 《Plant physiology》1993,102(4):1325-1329
A [beta]-1,4-endoxylanase (EIX) isolated from Trichoderma viride elicits plant defense responses in certain tobacco (Nicotiana tabacum L.) cultivars in addition to its xylan degradation activity. It was not clear whether elicitation occurs by cell wall fragments released by the enzymic activity or by the xylanase protein interacting directly with the plant cells. We used protoplasts isolated from tobacco leaves to test whether the cell wall is required for the stimulation of ethylene biosynthesis by EIX. Protoplasts of tobacco (cv Xanthi) responded to treatment with the EIX, as indicated by an increased production of ethylene and the loss of protoplast viability. Protoplasts prepared from ethylene-pretreated leaves produced more ethylene and had higher rates of cell death in response to EIX than protoplasts prepared from nonethylene-treated leaves. Protoplasts of an EIX-insensitive cultivar of tobacco (Hicks) were insensitive to high concentrations of EIX. The addition of a crude cell wall preparation to protoplasts during incubation with EIX did not enhance the induction of ethylene biosynthesis by nonsaturating as well as saturating concentrations of EIX. These data indicate that the xylanase activity of EIX is unrelated to the elicitation of ethylene biosynthesis through the production of some cell wall fragment, since the protein per se appears capable of eliciting ethylene biosynthesis in protoplasts.  相似文献   

11.
The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of d-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on d-malate as a carbon source, the d-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (l(+)-tartrate, d-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.  相似文献   

12.
13.
A reversibly glycosylated polypeptide from pea (Pisum sativum) is thought to have a role in the biosynthesis of hemicellulosic polysaccharides. We have investigated this hypothesis by isolating a cDNA clone encoding a homolog of Arabidopsis thaliana, Reversibly Glycosylated Polypeptide-1 (AtRGP1), and preparing antibodies against the protein encoded by this gene. Polyclonal antibodies detect homologs in both dicot and monocot species. The patterns of expression and intracellular localization of the protein were examined. AtRGP1 protein and RNA concentration are highest in roots and suspension-cultured cells. Localization of the protein shows it to be mostly soluble but also peripherally associated with membranes. We confirmed that AtRGP1 produced in Escherichia coli could be reversibly glycosylated using UDP-glucose and UDP-galactose as substrates. Possible sites for UDP-sugar binding and glycosylation are discussed. Our results are consistent with a role for this reversibly glycosylated polypeptide in cell wall biosynthesis, although its precise role is still unknown.The primary cell wall of dicot plants is laid down by young cells prior to the cessation of elongation and secondary wall deposition. Making up to 90% of the cell''s dry weight, the extracellular matrix is important for many processes, including morphogenesis, growth, disease resistance, recognition, signaling, digestibility, nutrition, and decay. The composition of the cell wall has been extensively described (Bacic et al., 1988; Levy and Staehelin, 1992; Zablackis et al., 1995), and yet many questions remain unanswered regarding the synthesis and interaction of these components to provide cells with a functional wall (Carpita and Gibeaut, 1993; Carpita et al., 1996).Heteropolysaccharide biosynthesis can be divided into four steps: (a) chain or backbone initiation, (b) elongation, (c) side-chain addition, and (d) termination and extracellular deposition (Waldron and Brett, 1985). The similarity between various polysaccharide backbones leads to the prediction that the synthesizing machinery would be conserved between them. For example, the backbone of xyloglucan polymers, β-1,4 glucan, can be synthesized independently of or concurrently with side-chain addition (Campbell et al., 1988; White et al., 1993), and this polymer and the chains that make up cellulose are identical. The later addition of side chains to xyloglucan are catalyzed by specific transferases (Kleene and Berger, 1993) such as xylosyltransferase (Campbell et al., 1988), galactosyltransferase, and fucosyltransferase (Faïk et al., 1997), all of which are localized to the Golgi compartment (Brummell et al., 1990; Driouich et al., 1993; Staehelin and Moore, 1995).The enzymes involved in wall biosynthesis have been recalcitrant to isolation (Carpita et al., 1996; Albersheim et al., 1997). Only recently has the first gene encoding putative cellulose biosynthetic enzymes, celA, been isolated from cotton (Gossypium hirsutum) and rice (Oryza sativa; Pear et al., 1996).During studies of polysaccharide synthesis in pea (Pisum sativum) Golgi membranes, Dhugga et al. (1991) identified a 41-kD protein doublet that they suggested was involved in polysaccharide synthesis. The authors showed that this protein could be glycosylated by radiolabeled UDP-Glc but that this labeling could be reversibly competed with by unlabeled UDP-Glc, UDP-Xyl, and UDP-Gal, the sugars that make up xyloglucan (Hayashi, 1989). The 41-kD protein was named PsRGP1 (P. sativum Reversibly Glycosylated Polypeptide-1; Dhugga et al., 1997). Furthermore, the conditions that stimulate or inhibit Golgi-localized β-glucan synthase activity are the same conditions that stimulate or inhibit the glycosylation of PsRGP1 (Dhugga et al., 1991). To address the role of this protein in polysaccharide synthesis, the authors purified the polypeptides and obtained the sequences from tryptic peptides (Dhugga and Ray, 1994). Antibodies raised against PsRGP1 showed that it is soluble and localized to the plasma membrane (Dhugga et al., 1991) and Golgi compartment (Dhugga et al., 1997). In addition to its Golgi localization, the steady-state glycosylation of PsRGP1 is approximately 10:7:3 (UDP-Glc:-Xyl:-Gal), which is similar to the typical sugar composition of xyloglucan (1.0:0.75:0.25; Dhugga et al., 1997).We were interested in studying various aspects of cell wall metabolism, including the synthesis of polysaccharides and their delivery to the cell wall. Studies in pea have shown that a 41-kD protein may be involved in cell wall polysaccharide synthesis, possibly that of xyloglucan (Dhugga et al., 1997). Here we report the characterization of AtRGP1 (Arabidopsis thaliana Reversibly Glycosylated Polypeptide-1), a soluble protein that can also be found weakly associated with membrane fractions, most likely the Golgi fraction. The reversible nature of the glycosylation of this Arabidopsis homolog by the substrates used to make polysaccharides (nucleotide sugars) suggests a possible role for AtRGP1 in polysaccharide biosynthesis.  相似文献   

14.
Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application.  相似文献   

15.
Enzymes of the isoprenoid biosynthetic pathway in halophilic archaea remain poorly characterized, and parts of the pathway remain cryptic. This situation may be explained, in part, by the difficulty of expressing active, functional recombinant forms of these enzymes. The use of newly available expression plasmids and hosts has allowed the expression and isolation of catalytically active Haloferax volcanii 3-hydroxy-3-methylglutaryl coenzyme A (CoA) synthase (EC 2.3.310). This accomplishment has permitted studies that represent, to the best of our knowledge, the first characterization of an archaeal hydroxymethylglutaryl CoA synthase. Kinetic characterization indicates that, under optimal assay conditions, which include 4 M KCl, the enzyme exhibits catalytic efficiency and substrate saturation at metabolite levels comparable to those reported for the enzyme from nonhalophilic organisms. This enzyme is unique in that it is the first hydroxymethylglutaryl CoA synthase that is insensitive to feedback substrate inhibition by acetoacetyl-CoA. The enzyme supports reaction catalysis in the presence of various organic solvents. Haloferax 3-hydroxy-3-methylglutaryl CoA synthase is sensitive to inactivation by hymeglusin, a specific inhibitor known to affect prokaryotic and eukaryotic forms of the enzyme, with experimentally determined Ki and kinact values of 570 ± 120 nM and 17 ± 3 min−1, respectively. In in vivo experiments, hymeglusin blocks the propagation of H. volcanii cells, indicating the critical role that the mevalonate pathway plays in isoprenoid biosynthesis by these archaea  相似文献   

16.
17.
The EE subunit of horse liver alcohol dehydrogenase (HLADH-EE) has been subcloned in pRSETb vector to generate a fusion His-tag protein. The migration from a multistep purification protocol for this well-known enzyme to a single-step has been successfully achieved. Several adjustments to the traditional purification procedure for His-tag proteins have been made to retain protein activity. A full characterization of the fusion enzyme has been carried out and compared with the native one. The K m for EtOH, NAD and NADH in the His-tag version of HLADH are in line with the ones reported in literature for the native enzyme. A shift in optimal pH activity is also observed. The enzyme retains the same stability and quaternary structure as the wild type and can therefore be easily used instead of the native HLADH for biotechnological applications.  相似文献   

18.
In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and PHOSPHOSERINE AMINOTRANSFERASE1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.  相似文献   

19.
Synchronizing cell growth, division and DNA replication is an essential property of all living cells. Accurate coordination of these cellular events is especially crucial for bacteria, which can grow rapidly and undergo multifork replication. Here we show that the metabolic protein ManA, which is a component of mannose phosphotransferase system, participates in cell wall construction of the rod shaped bacterium Bacillus subtilis. When growing rapidly, cells lacking ManA exhibit aberrant cell wall architecture, polyploidy and abnormal chromosome morphologies. We demonstrate that these cellular defects are derived from the role played by ManA in cell wall formation. Furthermore, we show that ManA is required for maintaining the proper carbohydrate composition of the cell wall, particularly of teichoic acid constituents. This perturbed cell wall synthesis causes asynchrony between cell wall elongation, division and nucleoid segregation.  相似文献   

20.
A bioinformatics approach identified a putative integral membrane protein, NCgl0543, in Corynebacterium glutamicum, with 13 predicted transmembrane domains and a glycosyltransferase motif (RXXDE), features that are common to the glycosyltransferase C superfamily of glycosyltransferases. The deletion of C. glutamicum NCgl0543 resulted in a viable mutant. Further glycosyl linkage analyses of the mycolyl-arabinogalactan-peptidoglycan complex revealed a reduction of terminal rhamnopyranosyl-linked residues and, as a result, a corresponding loss of branched 2,5-linked arabinofuranosyl residues, which was fully restored upon the complementation of the deletion mutant by NCgl0543. As a result, we have now termed this previously uncharacterized open reading frame, rhamnopyranosyltransferase A (rptA). Furthermore, an analysis of base-stable extractable lipids from C. glutamicum revealed the presence of decaprenyl-monophosphorylrhamnose, a putative substrate for the cognate cell wall transferase.A common feature of members of the Corynebacterineae is that they possess an unusual cell wall dominated by a heteropolysaccharide termed an arabinogalactan (AG), which is linked to both mycolic acids and peptidoglycan, forming the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex (5, 10, 12, 15, 24, 25, 34). The formation of the arabinan domain in the mAGP complex, consisting mainly of α1→5, α1→3, and β1→2 glycosyl linkages, results from the subsequent addition of arabinofuranose (Araf) from the lipid-linked sugar donor β-d-arabinofuranosyl-1-monophosphoryldecaprenol (DPA) by a set of unique membrane-bound arabinofuranosyltransferases (5, 7, 12, 18, 34).The deletion of Corynebacterium glutamicum emb (embCg) (4) and a chemical analysis of the cell wall revealed a novel truncated AG structure possessing only terminal Araf residues with a corresponding loss of cell wall-bound mycolic acids (4). The presence of a novel enzyme responsible for “priming” the galactan domain for further elaboration by EmbCg proteins led to the identification of AftA, which belongs to the glycosyltransferase C (GT-C) superfamily (5). Recently, additional GT-C enzymes have been identified, termed AftB, which is responsible for the attachment of terminal β(1→2) Araf residues (34), and AftC, which is involved in AG branching (12) before decoration with mycolic acids, both of which are conserved within the Corynebacterineae (12, 34). It is clear that additional glycosyltransferases involved in both AG and lipoarabinomannan biosynthesis still remain to be identified. Indeed, Liu and Mushegian (22) identified 15 members of the GT-C superfamily residing in the Corynebacterineae, representing candidates involved in the biosynthesis of cell wall-related glycans and lipoglycans (22). We have continued our earlier studies (5, 12, 34) to identify genes required for the biosynthesis of the core structural elements of the mAGP complex by studying mutants of C. glutamicum and the orthologous genes and enzymes of Mycobacterium tuberculosis.A particularly interesting feature of C. glutamicum is the presence of terminal rhamnopyranose (t-Rhap) residues attached to the C2 position of α(1→5)-linked Araf residues in the arabinan domain of AG (4). The biological function of these residues remains to be clarified; nevertheless, they are a feature of the corynebacterial cell wall, and the biosynthesis of which needs to be addressed. The current paradigm of AG biosynthesis follows a linear pathway which is built upon a decaprenyl pyrophosphate lipid carrier. The unique disaccharide linker and galactan domain is synthesized by a variety of GT-A and GT-B family glycosyltransferases, all of which utilizing a nucleotide diphosphate-activated sugar substrate for transferase activity. It has been hypothesized by us (3, 5) and others (8) that a major shift in the biosynthetic machinery takes place upon the initiation of arabinan polymerization. AftA, Emb, AftC, and AftB all belong to the GT-C family of glycosyltransferases, all of which utilize DPA as the sole lipid-activated phosphosugar donor for arabinose transfer into the cell wall. Since t-Rhap residues are present in the arabinan component of the cell wall, the enzyme(s) responsible for its addition is likely to belong to the GT-C family of glycosyltransferases and, as determined through deduction, is one which utilizes a lipid-phosphate-derived rhamnose substrate similar to DPA. Herein, we present the putative protein NCgl0543 as a distinct t-Rhap of the GT-C superfamily, which is responsible for the transfer of t-Rhap residues to the arabinan domain to form the branched 2,5-linked Araf motifs of C. glutamicum. In addition, we have identified a novel decaprenyl-monophosphorylrhamnose and discuss its role in substrate presentation for AG biosynthesis in C. glutamicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号