首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p.) once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx), an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage) secondary to mitochondrial dysfunction. These data appeared to be of great relevance when extrapolated to human neurodegenerative processes involving mitochondrial dysfunction and indicates that GPx is an important molecular target involved in the beneficial effects of probucol.  相似文献   

2.
3-Nitropropionic acid (3-NP), a potent irreversible inhibitor of mitochondrial complex II enzyme, leads to mitochondrial dysfunction and oxidative stress in Huntington's disease (HD) rat model. In this study, biochemical assays were used to demonstrate the presence of oxidative stress and mitochondrial dysfunction in 3-NP early stage HD rat models. Gas chromatography time-of-flight mass spectrometry (GC/TOFMS) was applied to analyze metabolites in brain and plasma of 3-NP-treated and vehicle-dosed rats. The orthogonal partial least-squares discriminant analysis (OPLS-DA) model generated using brain metabolic profiles robustly differentiated the 3-NP early stage HD rat model from the control. Metabonomic characterization of the 3-NP HD rat model facilitated the detection of biomarkers that define the physiopathological phenotype of early stage HD and elucidated the treatment effect of galantamine. Brain marker metabolites that were identified based on the OPLS-DA model were associated with altered glutathione metabolism, oxidative stress, and impaired energy metabolism. The treatment effect of galantamine in early stage HD could not be concluded mechanistically using the brain metabotype. Our study confirmed that GC/TOFMS is a strategic and complementary platform for the metabonomic characterization of 3-NP induced neurotoxicity in the early stage HD rat model.  相似文献   

3.
Probucol inhibits the proliferation of vascular smooth muscle cells in vitro and in vivo, and the drug reduces intimal hyperplasia and atherosclerosis in animals via induction of heme oxygenase-1 (HO-1). Because the succinyl ester of probucol, succinobucol, recently failed as an antiatherogenic drug in humans, we investigated its effects on smooth muscle cell proliferation. Succinobucol and probucol induced HO-1 and decreased cell proliferation in rat aortic smooth muscle cells. However, whereas inhibition of HO-1 reversed the antiproliferative effects of probucol, this was not observed with succinobucol. Instead, succinobucol but not probucol induced caspase activity and apoptosis, and it increased mitochondrial oxidation of hydroethidine to ethidium, suggestive of the participation of H(2)O(2) and cytochrome c. Also, succinobucol but not probucol converted cytochrome c into a peroxidase in the presence of H(2)O(2), and succinobucol-induced apoptosis was decreased in cells that lacked cytochrome c or a functional mitochondrial complex II. In addition, succinobucol increased apoptosis of vascular smooth muscle cells in vivo after balloon angioplasty-mediated vascular injury. Our results suggest that succinobucol induces apoptosis via a pathway involving mitochondrial complex II, H(2)O(2), and cytochrome c. These unexpected results are discussed in light of the failure of succinobucol as an antiatherogenic drug in humans.  相似文献   

4.
The study was designed to investigate the beneficial effect of quercetin supplementation in 3-nitropropionic acid (3-NP) induced model of Huntington's disease (HD). HD was induced in rats by administering sub-chronic dose of 3-NP, intraperitoneally, twice daily for 17 days. Quercetin was supplemented at a dose of 25 mg/kg body weight by oral gavage for 21 days. At the end of treatment, mitochondrial bioenergetics, mitochondrial swelling, oxidative stress, neurobehavioral deficits and histopathological changes were analyzed. Quercetin supplementation was able to reverse 3-NP induced inhibition of respiratory chain complexes, restore ATP levels, attenuate mitochondrial oxidative stress in terms of lipid peroxidation and prevent mitochondrial swelling. Quercetin administration also restored the activities of superoxide dismutase and catalase along with thiol content in 3-NP treated animals. Beneficial effect of quercetin administration was observed on 3-NP induced motor deficits analyzed by narrow beam walk and footprint analysis. Histopathological analysis of 3-NP treated rats revealed pyknotic nuclei and astrogliosis in striatum, which were reduced or absent in quercetin supplemented animals. Altogether, our results show that quercetin supplementation to 3-NP induced HD animals ameliorated mitochondrial dysfunctions, oxidative stress and neurobehavioral deficits in rats showing potential of this flavonoid in maintaining mitochondrial functions, suggesting a putative role of quercetin in HD management.  相似文献   

5.
To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10) interacts with heat shock protein 60 (HSP60) and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS) generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.  相似文献   

6.
Impairments in mitochondrial energy metabolism are thought to be involved in many neurodegenerative diseases. The mitochondrial inhibitor 3-nitropropionic acid (3-NP) induces striatal pathology mimicking neurodegeneration in vivo. Previous studies showed that 3-NP also triggered autophagy activation and apoptosis. In this study, we focused on the high-mobility group box 1 (HMGB1) protein, which is important in oxidative stress signaling as well as in autophagy and apoptosis, to explore whether the mechanisms of autophagy and apoptosis in neurodegenerative diseases are associated with metabolic impairment. To elucidate the role of HMGB1 in striatal degeneration, we investigated the impact of HMGB1 on autophagy activation and cell death induced by 3-NP. We intoxicated rat striata with 3-NP by stereotaxic injection and analyzed changes in expression HMGB1, proapoptotic proteins caspase-3 and phospho-c-Jun amino-terminal kinases (p-JNK). 3-NP–induced elevations in p-JNK, cleaved caspase-3, and autophagic marker LC3-II as well as reduction in SQSTM1 (p62), were significantly reduced by the HMGB1 inhibitor glycyrrhizin. Glycyrrhizin also significantly inhibited 3-NP–induced striatal damage. Neuronal death was replicated by exposing primary striatal neurons in culture to 3-NP. It was clear that HMGB1 was important for basal autophagy which was shown by rescue of cells through HMGB1 targeting shRNA approach.3-NP also induced the expression of HMGB1, p-JNK, and LC3-II in striatal neurons, and p-JNK expression was significantly reduced by shRNA knockdown of HMGB1, an effect that was reversed by exogenously increased expression of HMGB1. These results suggest that HMGB1 plays important roles in signaling for both autophagy and apoptosis in neurodegeneration induced by mitochondrial dysfunction.  相似文献   

7.
Compromised mitochondrial function in neurons and glia has been observed in several neurodegenerative disorders, including Huntington's disease and Alzheimer's disease. Chemical/hypoxic preconditioning may afford protection against subsequently more severe oxidative damages. In this study, we tested whether induction of hypoxia inducible factor-1 (HIF-1) may exert cytoprotective effects against mitochondrial dysfunction caused by 3-nitropropionic acid (3-NP) in glial cells. Preconditioning of C6 astroglial cells with cobalt chloride, mimosine (MIM), and desferrioxamine (DFO), all of which known to activate HIF-1, significantly attenuated cytotoxicity induced by 3-NP, an irreversible inhibitor of mitochondrial complex II, and antimycin A, a mitochondrial complex III inhibitor. Application of cadmium chloride capable of neutralizing cobalt-induced HIF-1 activation, HIF-specific oligodeoxynucleotide (ODN) decoy, and antisense phosphorothioate ODN against HIF-1alpha abolished the protective effect mediated by preconditioning with cobalt chloride. Preloading of C6 cells with SN50, PD98059, or SB202190, the respective inhibitor of nuclear factor-kappaB (NF-kappaB), p44/p42 extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK), failed to affect the protection afforded by cobalt preconditioning. Taken together, these results suggest that HIF-1 induction secondary to preconditioning with cobalt chloride or iron chelators may mediate the protective effects against metabolic insult induced by the mitochondrial inhibitor 3-NP in C6 astroglial cells.  相似文献   

8.
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3, is an inherited dominant autosomal neurodegenerative disorder. An expansion of Cytosine-Adenine-Guanine (CAG) repeats in the ATXN3 gene is translated as an expanded polyglutamine domain in the disease protein, ataxin-3. Selective neurodegeneration in MJD is evident in several subcortical brain regions including the cerebellum. Mitochondrial dysfunction has been proposed as a mechanism of neurodegeneration in polyglutamine disorders. In this study, we used different cell models and transgenic mice to assess the importance of mitochondria on cytotoxicity observed in MJD. Transiently transfected HEK cell lines with expanded (Q84) ataxin-3 exhibited a higher susceptibility to 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II. Increased susceptibility to 3-NP was also detected in stably transfected PC6-3 cells that inducibly express expanded (Q108) ataxin-3 in a tetracycline-regulated manner. Moreover, cerebellar granule cells from MJD transgenic mice were more sensitive to 3-NP inhibition than wild-type cerebellar neurons. PC6-3 (Q108) cells differentiated into a neuronal-like phenotype with nerve growth factor (NGF) exhibited a significant decrease in mitochondrial complex II activity. Mitochondria from MJD transgenic mouse model and lymphoblast cell lines derived from MJD patients also showed a trend toward reduced complex II activity. Our results suggest that mitochondrial complex II activity is moderately compromised in MJD, which may designate a common feature in polyglutamine toxicity.  相似文献   

9.
Histone deacetylases (HDACs) play vital roles in the pathophysiology of heart failure, which is associated with mitochondrial dysfunction. Tumor necrosis factor-α (TNF-α) contributes to the genesis of heart failure and impairs mitochondria. This study evaluated the role of HDACs in TNF-α-induced mitochondrial dysfunction and investigated their therapeutic potential and underlying mechanisms. We measured mitochondrial oxygen consumption rate (OCR) and ATP production using Seahorse XF24 extracellular flux analyzer and bioluminescent assay in control and TNF-α (10 ng/ml, 24 h)-treated HL-1 cells with or without HDAC inhibition. TNF-α increased Class I and II (but not Class IIa) HDAC activities (assessed by Luminescent) with enhanced expressions of Class I (HDAC1, HDAC2, HDAC3, and HDAC8) but not Class IIb HDAC (HDAC6 and HDAC10) proteins in HL-1 cells. TNF-α induced mitochondrial dysfunction with impaired basal, ATP-linked, and maximal respiration, decreased cellular ATP synthesis, and increased mitochondrial superoxide production (measured by MitoSOX red fluorescence), which were rescued by inhibiting HDACs with MPT0E014 (1 μM, a Class I and IIb inhibitor), or MS-275 (1 μM, a Class I inhibitor). MPT0E014 reduced TNF-α-decreased complex I and II enzyme (but not III or IV) activities (by enzyme activity microplate assays). Our results suggest that Class I HDAC actions contribute to TNF-α-induced mitochondrial dysfunction in cardiomyocytes with altered complex I and II enzyme regulation. HDAC inhibition improves dysfunctional mitochondrial bioenergetics with attenuation of TNF-α-induced oxidative stress, suggesting the therapeutic potential of HDAC inhibition in cardiac dysfunction.  相似文献   

10.
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3, is an inherited dominant autosomal neurodegenerative disorder. An expansion of Cytosine-Adenine-Guanine (CAG) repeats in the ATXN3 gene is translated as an expanded polyglutamine domain in the disease protein, ataxin-3. Selective neurodegeneration in MJD is evident in several subcortical brain regions including the cerebellum. Mitochondrial dysfunction has been proposed as a mechanism of neurodegeneration in polyglutamine disorders. In this study, we used different cell models and transgenic mice to assess the importance of mitochondria on cytotoxicity observed in MJD. Transiently transfected HEK cell lines with expanded (Q84) ataxin-3 exhibited a higher susceptibility to 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II. Increased susceptibility to 3-NP was also detected in stably transfected PC6-3 cells that inducibly express expanded (Q108) ataxin-3 in a tetracycline-regulated manner. Moreover, cerebellar granule cells from MJD transgenic mice were more sensitive to 3-NP inhibition than wild-type cerebellar neurons. PC6-3 (Q108) cells differentiated into a neuronal-like phenotype with nerve growth factor (NGF) exhibited a significant decrease in mitochondrial complex II activity. Mitochondria from MJD transgenic mouse model and lymphoblast cell lines derived from MJD patients also showed a trend toward reduced complex II activity. Our results suggest that mitochondrial complex II activity is moderately compromised in MJD, which may designate a common feature in polyglutamine toxicity.  相似文献   

11.
A destructive cycle of oxidative stress and mitochondrial dysfunction is proposed in neurodegenerative disease. Lipid peroxidation, one outcome of oxidative challenge, can lead to the formation of 4-hydroxy-2(E)-nonenal (HNE), a lipophilic alkenal that forms stable adducts on mitochondrial proteins. In this study, we characterized the effects of HNE on brain mitochondrial respiration. We used whole rat brain mitochondria and concentrations of HNE comparable to those measured in patients with Alzheimer's disease. Our results showed that HNE inhibited respiration at multiple sites. Complex I-linked and complex II-linked state 3 respirations were inhibited by HNE with IC50 values of approximately 200 microM HNE. Respiration was apparently diminished owing to the inhibition of complex III activity. In addition, complex II activity was reduced slightly. The lipophilicity and adduction characteristics of HNE were responsible for the effects of HNE on respiration. The inhibition of respiration was not prevented by N-acetylcysteine or aminoguanidine. Studies using mitochondria isolated from porcine cerebral cortex also demonstrated an inhibition of complex I- and complex II-linked respiration. Thus, in neurodegenerative disease, oxidative stress may impair mitochondrial respiration through the production of HNE.  相似文献   

12.
Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after 28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation (43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial functions leading to oxidative stress and neurobehavioral deficits.  相似文献   

13.
Excitotoxicity and disrupted energy metabolism are major events leading to nerve cell death in neurodegenerative disorders. These cooperative pathways share one common aspect: triggering of oxidative stress by free radical formation. In this work, we evaluated the effects of the antioxidant and energy precursor, levocarnitine ( l -CAR), on the oxidative damage and the behavioral, morphological, and neurochemical alterations produced in nerve tissue by the excitotoxin and free radical precursor, quinolinic acid (2,3-pyrindin dicarboxylic acid; QUIN), and the mitochondrial toxin, 3-nitropropionic acid (3-NP). Oxidative damage was assessed by the estimation of reactive oxygen species formation, lipid peroxidation, and mitochondrial dysfunction in synaptosomal fractions. Behavioral, morphological, and neurochemical alterations were evaluated as markers of neurotoxicity in animals systemically administered with l -CAR, chronically injected with 3-NP and/or intrastriatally infused with QUIN. At micromolar concentrations, l -CAR reduced the three markers of oxidative stress stimulated by both toxins alone or in combination. l -CAR also prevented the rotation behavior evoked by QUIN and the hypokinetic pattern induced by 3-NP in rats. Morphological alterations produced by both toxins (increased striatal glial fibrillary acidic protein-immunoreactivity for QUIN and enhanced neuronal damage in different brain regions for 3-NP) were reduced by l -CAR. In addition, l -CAR prevented the synergistic action of 3-NP and QUIN to increase motor asymmetry and depleted striatal GABA levels. Our results suggest that the protective properties of l -CAR in the neurotoxic models tested are mostly mediated by its characteristics as an antioxidant agent.  相似文献   

14.
3-Nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase enzyme (SDH), induces neurodegeneration similar to that observed in Huntington’s disease (HD). Reduction of prepulse inhibition (PPI) of acoustic startle response, locomotor hypoactivity, bilateral striatal lesions as well as brain oxidative stress are major features of HD. The present study was designed to investigate neuroprotective effect of Ginkgo biloba extract (EGb 761) on 3-NP induced neurobehavioral changes and striatal lesions.Rats administered 3-NP (20 mg/kg, s.c.) for five consecutive days exhibited PPI deficits and locomotor hypoactivity whereas, pretreatment of animals with EGb 761 (100 mg/kg, i.p. for 15 days) ahead of and during the induction of HD by 3-NP (20 mg/kg for 5 days starting at day 8) ameliorated 3-NP-induced neurobehavioral deficits. Administration of 3-NP increased the level of striatal malondialdehyde (MDA). This effect was prevented in animals pre-treated with EGb 761. Changes in the level of apoptotic regulatory gene expressions, following 3-NP treatment, were demonstrated as both an up-regulation and a down-regulation of the expression levels of striatal Bax and Bcl-xl genes, respectively. In addition, an up-regulation of the expression level of striatal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also observed. Pre-treatment with EGb 761 caused a down-regulation in striatal GAPDH and Bax together with an up-regulation of striatal Bcl-xl expression level as compared to the 3-NP treated group. Histochemical examination of striatal tissue showed that EGb 761 significantly prevented 3-NP induced inhibition of SDH activity. Histopathological examination further affirmed the neuroprotective effect of EGb 761 against 3-NP toxicity.Taken together, these results suggest that EGb 761 has a neuroprotective role in the current HD paradigm, which may be related to improvement of energy metabolism, antioxidant properties and antiapoptotic effects.  相似文献   

15.
Huntington's disease (HD) is characterized by the dysfunction of mitochondrial energy metabolism, which is associated with the functional impairment of succinate dehydrogenase (mitochondrial complex II), and pyruvate dehydrogenase (PDH). Treatment with 3-nitropropionic acid (3-NP), a potent irreversible inhibitor of succinate dehydrogenase, replicates most of the pathophysiological features of HD. In the present study, we investigated the effect of (-)schisandrin B [(-)Sch B, a potent enantiomer of schisandrin B] on 3-NP-induced cell injury in rat differentiated neuronal PC12 cells. The 3-NP caused cell necrosis, as assessed by lactate dehydrogenase (LDH) leakage, and mitochondrion-dependent cell apoptosis, as assessed by caspase-3 and caspase-9 activation, in differentiated PC12 cells. The cytotoxicity induced by 3-NP was associated with a depletion of cellular reduced glutathione (GSH) as well as the activation of redox-sensitive c-Jun N-terminal kinase (JNK) pathway and the inhibition of PDH. (-)Sch B pretreatment (5 and 15 μM) significantly reduced the extent of necrotic and apoptotic cell death in 3-NP-challenged cells. The cytoprotection afforded by (-)Sch B pretreatment was associated with the attenuation of 3-NP-induced GSH depletion as well as JNK activation and PDH inhibition. (-)Sch B pretreatment enhanced cellular glutathione redox status and ameliorated the 3-NP-induced cellular energy crisis, presumably by suppressing the activated JNK-mediated PDH inhibition, thereby protecting against necrotic and apoptotic cell death in differentiated PC12 cells.  相似文献   

16.
Oxidative stress and mitochondrial dysfunction have been linked to neurodegenerative disorders such as Parkinson's and Alzheimer's disease. However, it is not yet understood how endogenous mitochondrial oxidative stress may result in mitochondrial dysfunction. Most prior studies have tested oxidative stress paradigms in mitochondria through either chemical inhibition of specific components of the respiratory chain, or adding an exogenous insult such as hydrogen peroxide or paraquat to directly damage mitochondria. In contrast, mice that lack mitochondrial superoxide dismutase (SOD2 null mice) represent a model of endogenous oxidative stress. SOD2 null mice develop a severe neurological phenotype that includes behavioral defects, a severe spongiform encephalopathy, and a decrease in mitochondrial aconitase activity. We tested the hypothesis that specific components of the respiratory chain in the brain were differentially sensitive to mitochondrial oxidative stress, and whether such sensitivity would lead to neuronal cell death. We carried out proteomic differential display and examined the activities of respiratory chain complexes I, II, III, IV, V, and the tricarboxylic acid cycle enzymes alpha-ketoglutarate dehydrogenase and citrate synthase in SOD2 null mice in conjunction with efficacious antioxidant treatment and observed differential sensitivities of mitochondrial proteins to oxidative stress. In addition, we observed a striking pattern of neuronal cell death as a result of mitochondrial oxidative stress, and were able to significantly reduce the loss of neurons via antioxidant treatment.  相似文献   

17.
The cellular mechanisms that may underlie the death of dopaminergic neurons in Parkinson's disease are ubiquitin-proteasomal system (UPS) impairment, mitochondrial dysfunction, and oxidative stress. The goal of this work was to elucidate the correlation between mitochondrial dysfunction and UPS impairment, focusing on the role of oxidative stress. Our data revealed that mitochondria-DNA-depleted cells (rho0) are compromised at the mitochondrial and UPS levels and also show an alteration of the oxidative status. In parental cells (rho+), MPP(+) induced a clear inhibition of complex I activity, as well as an increase in ubiquitinylated protein levels, which was not observed in cells treated with lactacystin. Moreover, MPP(+) induced a decreased in the 20S chymotrypsin-like and peptidyl-glutamyl peptide hydrolytic-like proteolytic activities after 24 h of exposure. ROS production was increased in rho+ cells treated with MPP(+) or lactacystin, at early treatment periods. MPP(+) induced an increase in carbonyl group formation in rho+ cells. The results suggest that a mitochondrial alteration leads to an imbalance in the cellular oxidative status, inducing a proteasomal deregulation, which may exacerbate protein aggregation, and consequently degenerative events.  相似文献   

18.
Oxidative stress and mitochondrial dysfunction are known to play important roles in type 2 diabetes mellitus (T2DM) and insulin resistance. However, the pathology of T2DM remains complicated; in particular, the mechanisms of mitochondrial dysfunction in skeletal muscle and other insulin-sensitive tissues are as yet unclear. In the present study, we investigated the underlying mechanisms of oxidative stress and mitochondrial dysfunction by focusing on mitochondrial dynamics, including mitochondrial biogenesis and autophagy, in skeletal muscle of a nonobese diabetic animal model--the Goto-Kakizaki (GK) rat. The results showed that GK rats exhibited impaired glucose metabolism, increased oxidative stress and decreased mitochondrial function. These dysfunctions were found to be associated with induction of LC3B, Beclin1 and DRP1 (key molecules mediating the autophagy pathway), while they appeared not to affect the mitochondrial biogenesis pathway. In addition, (-)-epigallocatechin-3-gallate (EGCG) was tested as a potential autophagy-targeting nutrient, and we found that EGCG treatment improved glucose tolerance and glucose homeostasis in GK rats, and reduced oxidative stress and mitochondrial dysfunction in skeletal muscle. Amelioration of excessive muscle autophagy in GK rats through the down-regulation of the ROS-ERK/JNK-p53 pathway leads to improvement of glucose metabolism, reduction of oxidative stress and inhibition of mitochondrial loss and dysfunction. These results suggest (a) that hyperglycemia-associated oxidative stress may induce autophagy through up-regulation of the ROS-ERK/JNK-p53 pathway, which may contribute to mitochondrial loss in soleus muscle of diabetic GK rats, and (b) that EGCG may be a potential autophagy regulator useful in treatment of insulin resistance.  相似文献   

19.
Oxidative stress caused by mitochondrial dysfunction during reperfusion is a key pathogenic mechanism in cerebral ischemia–reperfusion (IR) injury. Propofol (2,6-diisopropylphenol) has been proven to attenuate mitochondrial dysfunction and reperfusion injury. The current study reveals that propofol decreases oxidative stress injury by preventing succinate accumulation in focal cerebral IR injury. We evaluated whether propofol could attenuate ischemic accumulation of succinate in transient middle cerebral artery occlusion in vivo. By isolating mitochondria from cortical tissue, we also examined the in vitro effects of propofol on succinate dehydrogenase (SDH) activity and various mitochondrial bioenergetic parameters related to oxidative stress injury, such as the production of reactive oxidative species, membrane potential, Ca2+-induced mitochondrial swelling, and morphology via electron microscopy. Propofol significantly decreased the ischemic accumulation of succinate by inhibiting SDH activity and inhibited the oxidation of succinate in mitochondria. Propofol can decrease membrane potential in normal mitochondria but not in ischemic mitochondria. Propofol prevents Ca2+-induced mitochondrial swelling and ultrastructural changes to mitochondria. The protective effect of propofol appears to act, at least in part, by limiting oxidative stress injury by preventing the ischemic accumulation of succinate.  相似文献   

20.
Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号