共查询到20条相似文献,搜索用时 15 毫秒
1.
Ivan Ko?ík Margaréta Práznovská Martina Ko?íková Zuzana Bobi?ová Jaroslav Holly Eva Vare?ková Franti?ek Kostolansky Gustáv Russ 《PloS one》2015,10(4)
The aim of the present study was to identify what influences the short half-life of the influenza A virus PB1-F2 protein and whether a prolonged half-life affects the properties of this molecule. We hypothesized that the short half-life of PB1-F2 could conceal the phenotype of the protein. Because proteasome degradation might be involved in PB1-F2 degradation, we focused on ubiquitination, a common label for proteasome targeting. A cluster of lysine residues was demonstrated as an ubiquitination acceptor site in evolutionary and functionally distinct proteins. The PB1-F2 sequence alignment revealed a cluster of lysines on the carboxy terminal end of PB1-F2 in almost all of the GenBank sequences available to date. Using a proximity ligation assay, we identified ubiquitination as a novel posttranslational modification of PB1-F2. Changing the lysines at positions 73, 78, and 85 to arginines suppressed the ubiquitination of A/Puerto Rico/8/1934 (H1N1)-derived PB1-F2. The mutation of the C-terminal lysine residue cluster positively affected the overall expression levels of avian A/Honk Kong/156/1997 (H5N1)- and mammalian A/Puerto Rico/8/1934 (H1N1)-derived PB1-F2. Moreover, increased PB1-F2 copy numbers strengthened the functions of this virus in the infected cells. The results of a minigenome luciferase reporter assay revealed an enhancement of viral RNA-dependent RNA polymerase activity in the presence of stabilized PB1-F2, regardless of viral origin. IFNβ antagonism was enhanced in 293T cells transfected with a plasmid expressing stabilized K→R mutant variants of PB1-F2. Compared with PB1-F2 wt, the loss of ubiquitination enhanced the antibody response after DNA vaccination. In summary, we revealed that PB1-F2 is an ubiquitinated IAV protein, and this posttranslational modification plays a central role in the regulation of the biological functions of this protein. 相似文献
2.
Palmitoylation of the Influenza A Virus M2 Protein Is Not Required for Virus Replication In Vitro but Contributes to Virus Virulence
下载免费PDF全文
Michael L. Grantham Wai-Hong Wu Erin N. Lalime Maria E. Lorenzo Sabra L. Klein Andrew Pekosz 《Journal of virology》2009,83(17):8655-8661
The influenza A virus M2 protein has important roles during virus entry and in the assembly of infectious virus particles. The cytoplasmic tail of the protein can be palmitoylated at a cysteine residue, but this residue is not conserved in a number of human influenza A virus isolates. Recombinant viruses encoding M2 proteins with a serine substituted for the cysteine at position 50 were generated in the A/WSN/33 (H1N1) and A/Udorn/72 (H3N2) genetic backgrounds. The recombinant viruses were not attenuated for replication in MDCK cells, Calu-3 cells, or in primary differentiated murine trachea epithelial cell cultures, indicating there was no significant contribution of M2 palmitoylation to virus replication in vitro. The A/WSN/33 M2C50S virus displayed a slightly reduced virulence after infection of mice, suggesting that there may be novel functions for M2 palmitoylation during in vivo infection.Influenza A virus is a member of the Orthomyxoviridae and contains a segmented, negative-sense RNA genome that codes for 10 or 11 proteins, depending upon the virus strain (11). The integral membrane protein M2 is the viral ion channel protein that is required during virus entry (29) and for the production of infectious virus particles (4, 10, 12, 13). The sequences responsible for the latter map to the cytoplasmic tail of the protein and overlap with a number of sites for posttranslational modification, which include palmitoylation and phosphorylation (7, 26, 31). Palmitoylation occurs on the cysteine present at amino acid 50 and is not required for ion channel activity of the M2 protein from A/Udorn/72 (H3N2) (7). Palmitoylation of M2 appeared to be dispensable for the production of infectious virus particles using a reassortant virus consisting of seven segments from an H3N8 subtype virus (A/Equine/Miami/63) and the M segment from an H1N1 subtype virus (A/Puerto Rico/8/34) (2). No studies examining the role of M2 palmitoylation in the context of a naturally occurring influenza A virus strain have been published to date.The significance of palmitoylation of the influenza A virus hemagglutinin (HA) protein can vary among virus strains. Palmitoylation of HA from an H7 and an H1 but not an H3 subtype is required for efficient membrane fusion (5, 24, 32), whereas palmitoylation of HA from an H3 but not an H1 subtype is required for virus assembly (5). An analysis of 3,532 sequences of influenza isolates from humans revealed that the M2 residue C50 is conserved in a strain-specific manner. A total of 2,602 of 2,610 H3N2 sequences code for a cysteine at this position; the cysteine, however, is conserved in only 330 of 1,051 H1N1 sequences (data not shown). A serine residue is substituted for cysteine in the majority of the H1N1 viruses that do not have a cytoplasmic palmitoylation site; the newly emerged 2009 H1N1 influenza A viruses, however, do have a cysteine at this position (3). The sequence alignment data are consistent with a strain-specific selective pressure to maintain the palmitoylation site on the M2 protein. Interestingly, other M2 cytoplasmic tail sequences display differential effects on infectious virus production, depending on the strain used (12).To investigate the role of M2 palmitoylation in influenza A virus replication, we substituted a serine for the cysteine residue at position 50 (C50S) of the M2 protein in two influenza A virus strains, A/Udorn/72 (H3N2) (rUdorn) and A/WSN/33 (H1N1) (rWSN). The resultant viruses were tested for their ability to replicate in tissue culture cells, and the mouse-adapted virus was tested for virulence in a mouse model of infection. Neither mutant virus showed any defect in virus replication in tissue culture cells, in differentiated murine primary trachea epithelial cells (mTEC), or in the lungs of infected mice. The viruses lacking a palmitoylation site, however, did have a modest reduction in virulence, suggesting that M2 palmitoylation is dispensable for in vitro replication but contributes to virus virulence in vivo. 相似文献
3.
4.
A. O. Golovko O. N. Koroleva A. P. Tolstova N. V. Kuz’mina E. V. Dubrovin V. L. Drutsa 《Biochemistry. Biokhimii?a》2018,83(11):1411-1421
Influenza A virus nuclear export protein (NEP) plays an important role in the viral life cycle. Recombinant NEP proteins containing (His)6-tag at either N-or C-terminus were obtained by heterologous expression in Escherichia coli cells and their high propensity for aggregation was demonstrated. Dynamic light scattering technique was used to study the kinetics and properties of NEP aggregation in solutions under different conditions (pH, ionic strength, presence of low-molecular-weight additives and organic solvents). Using atomic force microscopy, the predominance of spherical aggregates in all examined NEP preparations was shown, with some amyloid-like structures being observed in the case of NEP-C protein. A number of structure prediction programs were used to identify aggregation-prone regions in the NEP structure. All-atom molecular dynamics simulations indicate a high rate of NEP molecule aggregation and reveal the regions preferentially involved in the intermolecular contacts that are located at the edges of the rod-like protein molecule. Our results suggest that NEP aggregation is determined by different types of interactions and represents an intrinsic property of the protein that appears to be necessary for its functioning in vivo. 相似文献
5.
Influenza A virus PA-X comprises an N-terminal PA endonuclease domain and a C-terminal PA-X-specific domain. PA-X reduces host and viral mRNA accumulation via its endonuclease function. Here, we found that the N-terminal 15 amino acids, particularly six basic amino acids, in the C-terminal PA-X-specific region are important for PA-X shutoff activity. These six basic amino acids enabled a PA deletion mutant to suppress protein expression at a level comparable to that of wild-type PA-X. 相似文献
6.
流感病毒属正粘病毒科(Orthomyxoviridae),是一种带包膜并且分节段的单负链RNA病毒。根据病毒核衣壳蛋白(Nucleocapsid)和基质蛋白(Matrix,M)抗原性的差异,流感病毒可分为甲、乙、丙3个型。甲型流感病毒呈球形或丝状,其RNA基因组总长度在13.6kb左右,分为8个节段,共编码10个蛋白 相似文献
7.
Wild-type (WT) influenza A/PR/8/34 virus and its variant lacking the NS1 gene (delNS1) have been compared for their ability to mediate apoptosis in cultured cells and chicken embryos. Cell morphology, fragmentation of chromatin DNA, and caspase-dependent cleavage of the viral NP protein have been used as markers for apoptosis. Another marker was caspase cleavage of the viral M2 protein, which was also found to occur in an apoptosis-specific manner. In interferon (IFN)-competent host systems, such as MDCK cells, chicken fibroblasts, and 7-day-old chicken embryos, delNS1 virus induced apoptosis more rapidly and more efficiently than WT virus. As a consequence, delNS1 virus was also more lethal for chicken embryos than WT virus. In IFN-deficient Vero cells, however, apoptosis was delayed and developed with similar intensity after infection with both viruses. Taken together, these data indicate that the IFN antagonistic NS1 protein of influenza A viruses has IFN-dependent antiapoptotic potential. 相似文献
8.
Michael Henkel David Mitzner Peter Henklein Franz-Josef Meyer-Almes Anna Moroni Mattia L. DiFrancesco Leonhard M. Henkes Michael Kreim Stefan M. Kast Ulrich Schubert Gerhard Thiel 《PloS one》2010,5(6)
Background
PB1-F2 is a proapoptotic influenza A virus protein of approximately 90 amino acids in length that is located in the nucleus, cytosol and in the mitochondria membrane of infected cells. Previous studies indicated that the molecule destabilizes planar lipid bilayers and has a strong inherent tendency for multimerization. This may be correlate with its capacity to induce mitochondrial membrane depolarization.Methodology/Principal Findings
Here, we investigated whether PB1-F2 is able to form ion channels within planar lipid bilayers and microsomes. For that purpose, a set of biologically active synthetic versions of PB1-F2 (sPB1-F2) derived from the IAV isolates A/Puerto Rico/8/34(H1N1) (IAVPR8), from A/Brevig Mission/1/1918(H1N1) (IAVSF2) or the H5N1 consensus sequence (IAVBF2) were used. Electrical and fluorimetric measurements show that all three peptides generate in planar lipid bilayers or in liposomes, respectively, a barely selective conductance that is associated with stochastic channel type fluctuations between a closed state and at least two defined open states. Unitary channel fluctuations were also generated when a truncated protein comprising only the 37 c-terminal amino acids of sPB1-F2 was reconstituted in bilayers. Experiments were complemented by extensive molecular dynamics simulations of the truncated fragment in a lipid bilayer. The results indicate that the c-terminal region exhibits a slightly bent helical fold, which is stable and remains embedded in the bilayer for over 180 ns.Conclusion/Significance
The data support the idea that PB1-F2 is able to form protein channel pores with no appreciable selectivity in membranes and that the c-terminus is important for this function. This information could be important for drug development. 相似文献9.
10.
Preferential Phosphorylation of NP-Protein of Influenza A2 Virus by Virion-Associated Protein Kinase
Kazuo Sugiyama Tohru Kamada Kazufumi Shimizu Yasushi Watanabe 《Microbiology and immunology》1976,20(3):227-232
Influenza A2 virions were found to contain protein kinase activity which was stimulated, like in other virion-associated kinases, with Mg++ and Nonidet-P 40 but not with cyclic AMP. The kinase phosphorylated only the NP-protein fraction of the influenza virions in the in vitro reaction. In contrast, none of the influenza virion proteins were phosphorylated significantly during the process of virus production in infected chorioallantoic membranes, The in vitro and in vivo phosphorylations of influenza viral proteins were compared with those of Sendai virus (HVJ). 相似文献
11.
12.
When influenza A virus infects host cells, its integral matrix protein M2 forms a proton-selective channel in the viral envelope. Although X-ray crystallography and NMR studies using fragment peptides have suggested that M2 stably forms a tetrameric channel irrespective of pH, the oligomeric states of the full-length protein in the living cells have not yet been assessed directly. In the present study, we utilized recently developed stoichiometric analytical methods based on fluorescence resonance energy transfer using coiled-coil labeling technique and spectral imaging, and we examined the relationship between the oligomeric states of full-length M2 and its channel activities in living cells. In contrast to previous models, M2 formed proton-conducting dimers at neutral pH and these dimers were converted to tetramers at acidic pH. The antiviral drug amantadine hydrochloride inhibited both tetramerization and channel activity. The removal of cholesterol resulted in a significant decrease in the activity of the dimer. These results indicate that the minimum functional unit of the M2 protein is a dimer, which forms a complex with cholesterol for its function. 相似文献
13.
14.
p53 Protein Is a Suppressor of Papillomavirus DNA Amplificational Replication 总被引:1,自引:2,他引:1 下载免费PDF全文
Dina Lepik Ivar Ilves Arnold Kristjuhan Toivo Maimets Mart Ustav 《Journal of virology》1998,72(8):6822-6831
15.
Sarah L. Londrigan Michelle D. Tate Emma R. Job Jessica M. Moffat Linda M. Wakim Christopher A. Gonelli Damien F. J. Purcell Andrew G. Brooks Jose A. Villadangos Patrick C. Reading Justine D. Mintern 《PloS one》2015,10(11)
BST-2 (tetherin, CD317, HM1.24) restricts virus growth by tethering enveloped viruses to the cell surface. The role of BST-2 during influenza A virus infection (IAV) is controversial. Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine cells. IAV infection increased BST-2 surface expression by primary macrophages, but not alveolar epithelial cells (AEC). BST-2-deficient AEC and macrophages displayed no difference in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played little role in infectious IAV release from either AEC or macrophages. To examine BST-2 during IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and wild type animals. This study rules out a major role for endogenous BST-2 in modulating IAV in the mouse model of infection. 相似文献
16.
17.
Yizhong Ren Chufang Li Liqiang Feng Weiqi Pan Liang Li Qian Wang Jiashun Li Na Li Ling Han Xuehua Zheng Xuefeng Niu Caijun Sun Ling Chen 《Journal of virology》2016,90(1):591-598
Influenza A virus infection can arrest autophagy, as evidenced by autophagosome accumulation in infected cells. Here, we report that this autophagosome accumulation can be inhibited by amantadine, an antiviral proton channel inhibitor, in amantadine-sensitive virus infected cells or cells expressing influenza A virus matrix protein 2 (M2). Thus, M2 proton channel activity plays a role in blocking the fusion of autophagosomes with lysosomes, which might be a key mechanism for arresting autophagy. 相似文献
18.
Jason Buehler Deepak Navi Alessio Lorusso Amy Vincent Kelly Lager Cathy L. Miller 《Journal of virology》2013,87(19):10687-10699
Translation of influenza A virus PB1-F2 occurs in a second open reading frame (ORF) of the PB1 gene segment. PB1-F2 has been implicated in regulation of polymerase activity, immunopathology, susceptibility to secondary bacterial infection, and induction of apoptosis. Experimental evidence of PB1-F2 molecular function during infection has been collected primarily from human and avian viral isolates. As the 2009 H1N1 (H1N1pdm09) strain highlighted, some swine-derived influenza viruses have the capacity to infect human hosts and emerge as a pandemic. Understanding the impact that virulence factors from swine isolates have on both human and swine health could aid in early identification of viruses with pandemic potential. Studies examining PB1-F2 from swine isolates have focused primarily on H1N1pdm09, which does not encode PB1-F2 but was engineered to carry a full-length PB1-F2 ORF to assess the impact on viral replication and pathogenicity. However, experimental evidence of PB1-F2 protein expression from swine lineage viruses has not been demonstrated. Here, we reveal that during infection, PB1-F2 expression levels are substantially different in swine and human influenza viruses. We provide evidence that PB1-F2 expression is regulated at the translational level, with very low levels of PB1-F2 expression from swine lineage viruses relative to a human isolate PB1-F2. Translational regulation of PB1-F2 expression was partially mapped to two independent regions within the PB1 mRNA, located downstream of the PB1-F2 start site. Our data suggest that carrying a full-length PB1-F2 ORF may not be predictive of PB1-F2 expression in infected cells for all influenza A viruses. 相似文献
19.