首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative or homology modeling of a target protein based on sequence similarity to a protein with known structure is widely used to provide structural models of proteins. Depending on the target‐template similarity these model structures may contain regions of limited structural accuracy. In principle, molecular dynamics (MD) simulations can be used to refine protein model structures and also to model loop regions that connect structurally conserved regions but it is limited by the currently accessible simulation time scales. A recently developed biasing potential replica exchange (BP‐REMD) method was used to refine loops and complete decoy protein structures at atomic resolution including explicit solvent. In standard REMD simulations several replicas of a system are run in parallel at different temperatures allowing exchanges at preset time intervals. In a BP‐REMD simulation replicas are controlled by various levels of a biasing potential to reduce the energy barriers associated with peptide backbone dihedral transitions. The method requires much fewer replicas for efficient sampling compared with T‐REMD. Application of the approach to several protein loops indicated improved conformational sampling of backbone dihedral angle of loop residues compared to conventional MD simulations. BP‐REMD refinement simulations on several test cases starting from decoy structures deviating significantly from the native structure resulted in final structures in much closer agreement with experiment compared to conventional MD simulations. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Two independent replica-exchange molecular dynamics (REMD) simulations with an explicit water model were performed of the Trp-cage mini-protein. In the first REMD simulation, the replicas started from the native conformation, while in the second they started from a nonnative conformation. Initially, the first simulation yielded results qualitatively similar to those of two previously published REMD simulations: the protein appeared to be over-stabilized, with the predicted melting temperature 50-150K higher than the experimental value of 315K. However, as the first REMD simulation progressed, the protein unfolded at all temperatures. In our second REMD simulation, which starts from a nonnative conformation, there was no evidence of significant folding. Transitions from the unfolded to the folded state did not occur on the timescale of these simulations, despite the expected improvement in sampling of REMD over conventional molecular dynamics (MD) simulations. The combined 1.42 micros of simulation time was insufficient for REMD simulations with different starting structures to converge. Conventional MD simulations at a range of temperatures were also performed. In contrast to REMD, the conventional MD simulations provide an estimate of Tm in good agreement with experiment. Furthermore, the conventional MD is a fraction of the cost of REMD and continuous, realistic pathways of the unfolding process at atomic resolution are obtained.  相似文献   

3.
The folding of a polypeptide from an extended state to a well-defined conformation is studied using microsecond classical molecular dynamics (MD) simulations and replica exchange molecular dynamics (REMD) simulations in explicit solvent and in vacuo. It is shown that the solvated peptide folds many times in the REMD simulations but only a few times in the conventional simulations. From the folding events in the classical simulations we estimate an approximate folding time of 1-2 micros. The REMD simulations allow enough sampling to deduce a detailed Gibbs free energy landscape in three dimensions. The global minimum of the energy landscape corresponds to the native state of the peptide as determined previously by nuclear magnetic resonance (NMR) experiments. Starting from an extended state it takes about 50 ns before the native structure appears in the REMD simulations, about an order of magnitude faster than conventional MD. The calculated melting curve is in good qualitative agreement with experiment. In vacuo, the peptide collapses rapidly to a conformation that is substantially different from the native state in solvent.  相似文献   

4.
Protein–glycan recognition regulates a wide range of biological and pathogenic processes. Conformational diversity of glycans in solution is apparently incompatible with specific binding to their receptor proteins. One possibility is that among the different conformational states of a glycan, only one conformer is utilized for specific binding to a protein. However, the labile nature of glycans makes characterizing their conformational states a challenging issue. All-atom molecular dynamics (MD) simulations provide the atomic details of glycan structures in solution, but fairly extensive sampling is required for simulating the transitions between rotameric states. This difficulty limits application of conventional MD simulations to small fragments like di- and tri-saccharides. Replica-exchange molecular dynamics (REMD) simulation, with extensive sampling of structures in solution, provides a valuable way to identify a family of glycan conformers. This article reviews recent REMD simulations of glycans carried out by us or other research groups and provides new insights into the conformational equilibria of N-glycans and their alteration by chemical modification. We also emphasize the importance of statistical averaging over the multiple conformers of glycans for comparing simulation results with experimental observables. The results support the concept of “conformer selection” in protein–glycan recognition.  相似文献   

5.
Classical MD simulations (cMD) are limited by the sampling of relevant states of the peptides. Replica exchange (REMD) methods aim to search the conformational space of proteins more efficiently (reviewed in Ostermeir & Zacharias, 2013). We have developed a Hamiltonian REMD method that takes advantage of an intrinsic property of proteins, the specific Φ ? dihedral angle combinations along the polymer backbone. By employing a coupled two-dimensional biasing potential the energy barriers along the polymer backbone are reduced more effectively than by a previous approach based on a one-D biasing potential (Kannan & Zacharias, 2007). Thus, adjacent amino acids along the polymers backbone can easily switch between favourable regions in the Ramachandran plot. Additionally, energy barriers of rotameric states of amino acid side chains of proteins are also biased in the replica runs. The method improves the sampling of conformational substates of proteins at a modest number of replicas (nine replicas in the standard set-up with one replica running without biasing potential) compared to much larger numbers necessary in the case of standard temperature (T)-REMD simulations. A further improvement is achieved by a dynamical adjustment of the penalty potential levels in the replicas such that high exchange rates and improved mixing of conformations between different replicas are guaranteed. The biasing potential (BP)-REMD method turns out to be suitable to speed up both the folding of spaghetti-like test peptides and the refinement of loop decoy structures. Starting from extended structures, an α-helical oligo-alanine and β-hairpin chignolin and the Trp-cage protein fold more rapidly in near-native structures than in cMD simulations. The BP-REMD simulations not only accelerate the folding process of test proteins but also enlarge the variety of sampled configurations in conformational space. Since flexible parts of the protein can be penalized selectively, this method provides a precise tool to investigate regions of interest of the protein.  相似文献   

6.
Nguyen PH  Mu Y  Stock G 《Proteins》2005,60(3):485-494
A replica exchange molecular dynamics (REMD) simulation of a bicyclic azobenzene peptide in explicit dimethyl sulfoxide solution is presented in order to characterize the conformational structures and energy landscape of a photoswitchable peptide. It is shown that an enhanced-sampling technique such as the REMD method is essential to obtain a converged conformational sampling of the peptide at room temperature. This is because conventional MD simulations of less than approximately 100-ns length are either trapped in local minima (at 295 K) or-if run at high temperature-do not resemble the room-temperature REMD results. Calculating various nuclear Overhauser effects (NOEs) and (3)J-couplings, a good overall agreement between the REMD simulations and the NMR experiments of Renner et al. (Biopolymers 2000;54:501-514) is found. In particular, the REMD study confirms the general picture drawn by Renner et al. that the trans-isomer of the azobenzene peptide exhibits a well-defined structure, while the cis-isomer is a conformational heterogeneous system; that is, the trans-isomer occurs in 2 well-defined conformers, while the cis-isomer represents an energetically frustrated system that leads to an ensemble of conformational structures. Employing a principal component analysis of the REMD data, the free energy landscape of the systems is studied at various temperatures. The implications for the folding and unfolding pathways of the system are discussed.  相似文献   

7.
The conformational states of two peptide sequences that bind to staphylococcal enterotoxin B are sampled by replica exchange molecular dynamic (REMD) simulations in explicit water. REMD simulations were treated with 52 replicas in the range of 280–501 K for both peptides. The conformational ensembles of both peptides are dominated by random coil, bend and turn structures with a small amount of helical structures for each temperature. In addition, while an insignificant presence of β-bridge structures were observed for both peptides, the β-sheet structure was observed only for peptide 3. The results obtained from simulations at 300 K are consistent with the experimental results obtained from circular dichroism spectroscopy. From the analysis of REMD results, we also calculated hydrophobic and hydrophilic solvent accessible surface areas for both peptides, and it was observed that the hydrophobic segments of the peptides tend to form bend or turn structures. Moreover, the free-energy landscapes of both peptides were obtained by principal component analysis to understand how the secondary structural properties change according to their complex space. From the free-energy analysis, we have found several minima for both peptides at decreased temperature. For these obvious minima of both peptides, it was observed that the random coil, bend and turn structures are still dominant and the helix, β-bridge or β-sheet structures can appear or disappear with respect to minima. On the other hand, when we compare the results of REMD with conventional MD simulations for these peptides, the configurations of peptide 3 might be trapped in energy minima during the conventional MD simulations. Hence, it can be said that the REMD simulations have provided a sufficiently high sampling efficiency.  相似文献   

8.
9.
Reaching the experimental time scale of millisecond is a grand challenge for protein folding simulations. The development of advanced Molecular Dynamics techniques like Replica Exchange Molecular Dynamics (REMD) makes it possible to reach these experimental timescales. In this study, an attempt has been made to reach the multi microsecond simulation time scale by carrying out folding simulations on a three helix bundle protein, Villin, by combining REMD and Amber United Atom model. Twenty replicas having different temperatures ranging from 295 K to 390 K were simulated for 1.5 μs each. The lowest Root Mean Square Deviation (RMSD) structure of 2.5 ? was obtained with respect to native structure (PDB code 1VII), with all the helices formed. The folding population landscapes were built using segment-wise RMSD and Principal Components as reaction coordinates. These analyses suggest the two-stage folding for Villin. The combination of REMD and Amber United Atom model may be useful to understand the folding mechanism of various fast folding proteins.  相似文献   

10.
Abstract

Reaching the experimental time scale of millisecond is a grand challenge for protein folding simulations. The development of advanced Molecular Dynamics techniques like Replica Exchange Molecular Dynamics (REMD) makes it possible to reach these experimental timescales. In this study, an attempt has been made to reach the multi microsecond simulation time scale by carrying out folding simulations on a three helix bundle protein, Villin, by combining REMD and Amber United Atom model. Twenty replicas having different temperatures ranging from 295 K to 390 K were simulated for 1.5 μs each. The lowest Root Mean Square Deviation (RMSD) structure of 2.5 Å was obtained with respect to native structure (PDB code 1VII), with all the helices formed. The folding population landscapes were built using segment-wise RMSD and Principal Components as reaction coordinates. These analyses suggest the two-stage folding for Villin. The combination of REMD and Amber United Atom model may be useful to understand the folding mechanism of various fast folding proteins  相似文献   

11.
The interaction of ZnO nanoparticles with biological molecules such as proteins is one of the most important and challenging problems in molecular biology. Molecular dynamics (MD) simulations are useful technique for understating the mechanism of various interactions of proteins and nanoparticles. In the present work, the interaction mechanism of insulin with ZnO nanoparticles was studied. Simulation methods including MD and replica exchange molecular dynamics (REMD) and their conditions were surveyed. According to the results obtained by REMD simulation, it was found that insulin interacts with ZnO nanoparticle surface via its polar and charged amino acids. Unfolding insulin at ZnO nanoparticle surface, the terminal parts of its chains play the main role. Due to the linkage between chain of insulin and chain of disulfide bonds, opposite directional movements of N terminal part of chain A (toward nanoparticle surface) and N termini of chain B (toward solution) make insulin unfolding. In unfolding of insulin at this condition, its helix structures convert to random coils at terminal parts chains.  相似文献   

12.
BackgroundMolecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.Scope of reviewFirst, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.Major conclusionsRecent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.General significanceMD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.  相似文献   

13.
The conformational properties of di- and trisaccharide fragments of the polysialic acid O-antigen capsular polysaccharide (CPS) of Neisseria meningitidis B (NmB) have been investigated by a combination of solution phase NMR spectroscopy and explicit-solvent molecular dynamics (MD) simulations. Simulations employing 100 ns of conventional MD, as well as 160 ns of replica exchange MD (REMD), with the GLYCAM06 force field were shown to be in agreement with experimental NMR scalar J-coupling and NOE values. The presence of conformational families has been determined by monitoring interglycosidic torsion angles, by comparing structural superimpositions, as well as via a Bayesian statistical analysis of the torsional data. Attempts to augment the immunogenicity of NmB CPS often involve chemical modifications of the N-acetyl moiety. Here the effects of these chemical group modifications on the conformational properties of the trisialoside have been probed via REMD simulations of the N-glycolyl, N-propionyl, N-propyl and N-butanoyl analogues. Although there were conformational families unique to each non-native analogue, the chemical modifications resulted in largely equivalent overall conformational phase-spaces compared to the native trisialoside. On the basis of the conformational distributions, these shared conformational properties suggest that a recurrent global conformational epitope may be present in both the native and chemically modified CPS fragments. Explanations are therefore provided for monoclonal antibody cross-reactivity, in terms of recognition of a shared global CPS conformation, as well as for lack of cross-reactivity, in terms of fine structural differences associated with the N-acyl groups, which may be dominant in highly matured antibody responses.  相似文献   

14.
Chebaro Y  Derreumaux P 《Proteins》2009,75(2):442-452
Aggregation of the Abeta1-40/Abeta1-42 peptides is a key factor in Alzheimer's disease. Though the inhibitory effect of N-methylated Abeta16-22 (mAbeta16-22) peptides is well characterized in vitro, there is little information on how they disassemble full-length Abeta fibrils or block fibril formation. Here, we report coarse-grained implicit solvent molecular dynamics (MD) and replica exchange molecular dynamics (REMD) simulations on Abeta16-22 and mAbeta16-22 monomers, and then a preformed six-chain Abeta16-22 bilayer with either four copies of Abeta16-22 or four copies of mAbeta16-22. Our simulations show that the effect of N-methylation on mAbeta16-22 monomer is to reduce the density of compact forms. While 100 ns MD trajectories do not reveal any significant differences between the two ten-chain systems, the REMD simulations totaling 1 micros help understand the first steps of Abeta16-22 protofibril disassembly by N-methylated inhibitors. Notably, we find that mAbeta16-22 preferentially interacts with Abeta16-22 by blocking both beta-sheet extension and lateral association of layers, but also by intercalation of the inhibitors allowing sequestration of Abeta16-22 peptides. This third binding mode is particularly appealing for blocking Abeta fibrillogenesis.  相似文献   

15.
Using (13)C spin relaxation NMR in combination with molecular dynamic (MD) simulations, we characterized internal motions within double-stranded DNA on the pico- to nano-second time scale. We found that the C-H vectors in all cytosine ribose moieties within the Dickerson-Drew dodecamer (5'-CGCGAATTCGCG-3') are subject to high amplitude motions, while the other nucleotides are essentially rigid. MD simulations showed that repuckering is a likely motional model for the cytosine ribose moiety. Repuckering occurs with a time constant of around 100 ps. Knowledge of DNA dynamics will contribute to our understanding of the recognition specificity of DNA-binding proteins such as cytosine methyltransferase.  相似文献   

16.

Background

Molecular dynamics (MD) simulations provide valuable insight into biomolecular systems at the atomic level. Notwithstanding the ever-increasing power of high performance computers current MD simulations face several challenges: the fastest atomic movements require time steps of a few femtoseconds which are small compared to biomolecular relevant timescales of milliseconds or even seconds for large conformational motions. At the same time, scalability to a large number of cores is limited mostly due to long-range interactions. An appealing alternative to atomic-level simulations is coarse-graining the resolution of the system or reducing the complexity of the Hamiltonian to improve sampling while decreasing computational costs. Native structure-based models, also called Gō-type models, are based on energy landscape theory and the principle of minimal frustration. They have been tremendously successful in explaining fundamental questions of, e.g., protein folding, RNA folding or protein function. At the same time, they are computationally sufficiently inexpensive to run complex simulations on smaller computing systems or even commodity hardware. Still, their setup and evaluation is quite complex even though sophisticated software packages support their realization.

Results

Here, we establish an efficient infrastructure for native structure-based models to support the community and enable high-throughput simulations on remote computing resources via GridBeans and UNICORE middleware. This infrastructure organizes the setup of such simulations resulting in increased comparability of simulation results. At the same time, complete workflows for advanced simulation protocols can be established and managed on remote resources by a graphical interface which increases reusability of protocols and additionally lowers the entry barrier into such simulations for, e.g., experimental scientists who want to compare their results against simulations. We demonstrate the power of this approach by illustrating it for protein folding simulations for a range of proteins.

Conclusions

We present software enhancing the entire workflow for native structure-based simulations including exception-handling and evaluations. Extending the capability and improving the accessibility of existing simulation packages the software goes beyond the state of the art in the domain of biomolecular simulations. Thus we expect that it will stimulate more individuals from the community to employ more confidently modeling in their research.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-292) contains supplementary material, which is available to authorized users.  相似文献   

17.
Replica exchange molecular dynamics (REMD) has become a valuable tool in studying complex biomolecular systems. However, its application on distributed computing grids is limited by the heterogeneity of this environment. In this study, we propose a REMD implementation referred to as greedy REMD (gREMD) suitable for computations on heterogeneous grids. To decentralize replica management, gREMD utilizes a precomputed schedule of exchange attempts between temperatures. Our comparison of gREMD against standard REMD suggests four main conclusions. First, gREMD accelerates grid REMD simulations by as much as 40 %. Second, gREMD increases CPU utilization rates in grid REMD by up to 60 %. Third, we argue that gREMD is expected to maintain approximately constant CPU utilization rates and simulation wall-clock times with the increase in the number of replicas. Finally, we show that gREMD correctly implements the REMD algorithm and reproduces the conformational ensemble of a short peptide sampled in our previous standard REMD simulations. We believe that gREMD can find its place in large-scale REMD simulations on heterogeneous computing grids.
Graphical Abstract Standard replica exchange molecular dynamics (REMD) typically requires all replicas to complete prior to initiation of the replica exchange protocol. Greedy REMD decentralizes this process and therefore only requires a replica and its predetermined exchange partner to have finished simulations prior to initiating replica exchange. Because greedy REMD reduces the idle time associated with replica exchange tasks, it becomes particularly well suited for performing REMD on heterogeneous distributed computing environments.
  相似文献   

18.
M. F. Thorpe  S. Banu Ozkan 《Proteins》2015,83(12):2279-2292
The most successful protein structure prediction methods to date have been template‐based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug‐design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr‐REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native‐like structures from a template and to provide a set of persistent contacts to be employed during re‐folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. Proteins 2015; 83:2279–2292. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Raval A  Piana S  Eastwood MP  Dror RO  Shaw DE 《Proteins》2012,80(8):2071-2079
Accurate computational prediction of protein structure represents a longstanding challenge in molecular biology and structure-based drug design. Although homology modeling techniques are widely used to produce low-resolution models, refining these models to high resolution has proven difficult. With long enough simulations and sufficiently accurate force fields, molecular dynamics (MD) simulations should in principle allow such refinement, but efforts to refine homology models using MD have for the most part yielded disappointing results. It has thus far been unclear whether MD-based refinement is limited primarily by accessible simulation timescales, force field accuracy, or both. Here, we examine MD as a technique for homology model refinement using all-atom simulations, each at least 100 μs long-more than 100 times longer than previous refinement simulations-and a physics-based force field that was recently shown to successfully fold a structurally diverse set of fast-folding proteins. In MD simulations of 24 proteins chosen from the refinement category of recent Critical Assessment of Structure Prediction (CASP) experiments, we find that in most cases, simulations initiated from homology models drift away from the native structure. Comparison with simulations initiated from the native structure suggests that force field accuracy is the primary factor limiting MD-based refinement. This problem can be mitigated to some extent by restricting sampling to the neighborhood of the initial model, leading to structural improvement that, while limited, is roughly comparable to the leading alternative methods.  相似文献   

20.
The present study involves the utilization of replica exchange molecular dynamics (REMD) methodology to explore the conformational space of Neuromedin C (NMC) using implicit (REMDimplicit) and explicit (REMDexplicit) water models. Comparison of the structures obtained from these simulations indicate that REMDexplicit trajectory display a greater tendency to induce β‐turns and bent structures as compared to those obtained from the REMDimplicit simulation. Moreover, two additional MD trajectories performed using Langevin (MDLang) and Berendsen (MDBerend) algorithms under generalized born (GB) solvent conditions were also suitably competent to sample similar kinds of conformations, although the extent of beta turns was low compared to those observed in REMDexplicit simulation. Finally, the comparison of results obtained from all the trajectories and those derived from the NMR studies of Ni(II) complex of NMC indicates that the REMD under explicit conditions is more efficient in sampling the conformations, and show good agreement with the experimental results. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号