首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The PIDDosome, which is an oligomeric signaling complex composed of PIDD, RAIDD and caspase-2, can induce proximity-based dimerization and activation of caspase-2. In the PIDDosome assembly, the adaptor protein RAIDD interacts with PIDD and caspase-2 via CARD:CARD and DD:DD, respectively. To analyze the PIDDosome assembly, we purified all of the DD superfamily members and performed biochemical analyses. The results revealed that caspase-2 CARD is an insoluble protein that can be solubilized by its binding partner, RAIDD CARD, but not by full-length RAIDD; this indicates that full-length RAIDD in closed states cannot interact with caspase-2 CARD. Moreover, we found that caspase-2 CARD can be solubilized and interact with full-length RAIDD in the presence of PIDD DD, indicating that PIDD DD initially binds to RAIDD, after which caspase-2 can be recruited to RAIDD via a CARD:CARD interaction. Our study will be useful in determining the order of assembly of the PIDDosome. [BMB Reports 2013; 46(9): 471-476]  相似文献   

2.
Much effort has been put in the discovery of ways to selectively kill p53-deficient tumor cells and targeting cell cycle checkpoint pathways has revealed promising candidates. Studies in zebrafish and human cell lines suggested that the DNA damage response kinase, checkpoint kinase 1 (Chk1), not only regulates onset of mitosis but also cell death in response to DNA damage in the absence of p53. This effect reportedly relies on ataxia telangiectasia mutated (ATM)-dependent and PIDDosome-mediated activation of Caspase-2. However, we show that genetic ablation of PIDDosome components in mice does not affect cell death in response to γ-irradiation. Furthermore, Chk1 inhibition largely failed to sensitize normal and malignant cells from p53−/− mice toward DNA damaging agents, and p53 status did not affect the death-inducing activity of DNA damage after Chk1 inhibition in human cancer cells. These observations argue against cross-species conservation of a Chk1-controlled cell survival pathway demanding further investigation of the molecular machinery responsible for cell death elicited by forced mitotic entry in the presence of DNA damage in different cell types and model organisms.  相似文献   

3.
Caspase-2 activation is redundant during seizure-induced neuronal death   总被引:5,自引:0,他引:5  
Seizure-induced neuronal death may be under the control of the caspase family of cell death proteases. We examined the role of caspase-2 in a model of focally evoked limbic seizures with continuous EEG recording. Seizures were elicited by microinjection of kainic acid into the amygdala of the rat and terminated after 40 min by diazepam. Caspase-2 was constitutively present in brain, mostly within neurons, and was detected in both cytoplasm and nucleus. Cleaved caspase-2 (12 kDa) was detected immediately following seizure termination within injured ipsilateral hippocampus, contiguous with increased Val-Asp-Val-Ala-Asp (VDVADase) activity, a putative measure of activated caspase-2. Expression of receptor interacting protein (RIP)-associated Ich-1-homologous protein with death domain (RAIDD) was increased following seizures, whereas expression of RIP and tumor necrosis factor receptor associated protein with death domain (TRADD), other components thought to be linked to the caspase-2 activation and signaling mechanism, were unchanged. Intracerebroventricular administration of z-VDVAD-fluoromethyl ketone blocked seizure-induced caspase-2 activity but did not alter caspase-8 activity and failed to affect DNA fragmentation or neuronal death. These data support activation of caspase-2 following seizures but suggest that parallel caspase pathways may circumvent deficits in caspase-2 function to complete the cell death process.  相似文献   

4.
Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular response, e.g. apoptosis, to a range of environmental and intracellular stresses. Previous reports have suggested a regulatory role of p53 in the early activation of caspase-2, upstream of mitochondrial apoptotic signaling. Here we show that excessive ROS formation, induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) exposure, induces apoptosis in primary cultured neural stem cells (NSCs) from cortices of E15 rat embryos. Following DMNQ exposure cells exhibited apoptotic hallmarks such as Bax oligomerization and activation, cytochrome c release, caspase activation and chromatin condensation. Additionally, we could show early p53 accumulation and a subsequent activation of caspase-2. The attenuation of caspase-2 activity with selective inhibitors could antagonize the mitochondrial signaling pathway and cell death. Overall, our results strongly suggest that DMNQ-induced oxidative stress causes p53 accumulation and consequently caspase-2 activation, which in turn initiates apoptotic cell death via the mitochondria-mediated caspase-dependent pathway in NSCs.  相似文献   

5.
Caspase-1 activation by Salmonella   总被引:7,自引:0,他引:7  
Salmonella is an interesting example of how the selective pressure of host environments has led to the evolution of sophisticated bacterial virulence mechanisms. This microbe exploits the first-line of defence, the macrophage, as a crucial tool in the initiation of disease. After invasion of intestinal macrophages, a virulence protein secreted by Salmonella specifically induces apoptotic cell death by activating the cysteine protease caspase-1. The pro-apoptotic capability is necessary for successful pathogenesis. The study of mechanisms by which Salmonella induces programmed cell death offers new insights into how pathogens cause disease and into general mechanisms of activation of the innate immune system.  相似文献   

6.
Eye development is a complex process that involves the formation of the retina and the lens, collectively called the eyeball, as well as the formation of auxiliary eye structures such as the eyelid, lacrimal gland, cornea and conjunctiva. The developmental requirements for the formation of each individual structure are only partially understood. We have shown previously that the homeobox-containing gene Rx is a key component in eye formation, as retinal structures do not develop and retina-specific gene expression is not observed in Rx-deficient mice. In addition, Rx−/− embryos do not develop any lens structure, despite the fact that Rx is not expressed in the lens. This demonstrates that during normal mammalian development, retina-specific gene expression is necessary for lens formation. In this paper we show that lens formation can be restored in Rx-deficient embryos experimentally, by the elimination of β-catenin expression in the head surface ectoderm. This suggests that β-catenin is involved in lens specification either through Wnt signaling or through its function in cell adhesion. In contrast to lens formation, we demonstrate that the development of auxiliary eye structures does not depend on retina-specific gene expression or retinal morphogenesis. These results point to the existence of two separate developmental processes involved in the formation of the eye and its associated structures. One involved in the formation of the eyeball and the second involved in the formation of the auxiliary eye structures.  相似文献   

7.
Caspase-2 is critical for genotoxic stress induced apoptosis and is activated by formation of the PIDDosome, an oligomeric caspase-2 activating complex. The PIDDosome comprises three protein components, PIDD, RAIDD, and caspase-2. RAIDD contains both a death domain (DD) and a caspase recruitment domain (CARD). It acts as the bridge to recruit PIDD using the DD: DD interaction and to recruit caspase-2 via the CARD: CARD interaction. Here we report biochemical characterization and in vitro reconstitution of the core interactions in the PIDDosome. We show that RAIDD CARD and RAIDD DD interact with their binding partners, caspase-2 CARD and PIDD DD, respectively. However, full-length RAIDD fails to interact with either caspase-2 CARD or PIDD DD under a physiological buffer condition. We reveal that this lack of interaction of full-length RAIDD is not due to its tendency to aggregate under the physiological buffer condition, as decreasing full-length RAIDD aggregation using high salt or high pH is not able to promote complex formation. Instead, full-length RAIDD forms both binary and ternary complexes under a low salt condition. Successful in vitro reconstitution of the ternary complex provides a basis for further structural studies of the PIDDosome.  相似文献   

8.
Chlamydia trachomatis is a common sexually transmitted pathogen and is associated with infant pneumonia. Data from the female mouse model of genital tract chlamydia infection suggests a requirement for TLR2-dependent signaling in the induction of inflammation and oviduct pathology. We hypothesized that the role of TLR2 in moderating mucosal inflammation is site specific. In order to investigate this, we infected mice via the intranasal route with C. muridarum and observed that in the absence of TLR2 activation, mice had more severe disease, higher lung cytokine levels, and an exaggerated influx of neutrophils and T-cells into the lungs. This could not be explained by impaired bacterial clearance as TLR2-deficient mice cleared the infection similar to controls. These data suggest that TLR2 has an anti-inflammatory function in the lung during Chlamydia infection, and that the role of TLR2 in mucosal inflammation varies at different mucosal surfaces.  相似文献   

9.
10.
Caspase-2 redux     
It has been difficult to assign caspase-2 to the effector or initiator caspase groups. It bears sequence homology to initiators (caspase-9 and CED-3), but its cleavage specificity is closer to the effectors (caspase-3 and -7). Interest in caspase-2 was dampened by the lack of a dramatic phenotype in the caspase-2 null mouse. Studies have been inhibited by the lack of knowledge about its mechanism of activation and the lack of specific methods to assay its activity. Molecular studies have defined a unique role for caspase-2 in apoptosis initiated by beta-amyloid toxicity or by trophic factor deprivation. Recently, a role for caspase-2 as an upstream initiator of mitochondrial permeabilization has been proposed. Thus, while much remains to be deciphered about caspase-2, most critically the mode of activation, it is clear that caspase-2 plays critical and singular roles in the control of programmed cell death.  相似文献   

11.
IL-1β and IL-18 are crucial regulators of inflammation and immunity. Both cytokines are initially expressed as inactive precursors, which require processing by the protease caspase-1 for biological activity. Caspase-1 itself is activated in different innate immune complexes called inflammasomes. In addition, caspase-1 activity regulates unconventional protein secretion of many other proteins involved in inflammation and repair. Human caspase-4 is a poorly characterized member of the caspase family, which is supposed to be involved in endoplasmic reticulum stress-induced apoptosis. However, its gene is located on the same locus as the caspase-1 gene, which raises the possibility that caspase-4 plays a role in inflammation. In this study, we show that caspase-4 expression is required for UVB-induced activation of proIL-1β and for unconventional protein secretion by skin-derived keratinocytes. These processes require expression of the nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 inflammasome, and caspase-4 physically interacts with its central molecule caspase-1. As the active site of caspase-4 is required for activation of caspase-1, the latter most likely represents a substrate of caspase-4. Caspase-4 expression is also essential for efficient nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 and for absent in melanoma 2 inflammasome-dependent proIL-1β activation in macrophages. These results demonstrate an important role of caspase-4 in inflammation and innate immunity through activation of caspase-1. Therefore, caspase-4 represents a novel target for the treatment of (auto)inflammatory diseases.  相似文献   

12.
Cell migration is initiated by plasma membrane protrusions, in the form of lamellipodia and filopodia. The latter rod-like projections may exert sensory functions and are found in organisms as distant in evolution as mammals and amoeba such as Dictyostelium discoideum. In mammals, lamellipodia protrusion downstream of the small GTPase Rac1 requires a multimeric protein assembly, the WAVE-complex, which activates Arp2/3-mediated actin filament nucleation and actin network assembly. A current model of filopodia formation postulates that these structures arise from a dendritic network of lamellipodial actin filaments by selective elongation and bundling. Here, we have analyzed filopodia formation in mammalian cells abrogated in expression of essential components of the lamellipodial actin polymerization machinery. Cells depleted of the WAVE-complex component Nck-associated protein 1 (Nap1), and, in consequence, of lamellipodia, exhibited normal filopodia protrusion. Likewise, the Arp2/3-complex, which is essential for lamellipodia protrusion, is dispensable for filopodia formation. Moreover, genetic disruption of nap1 or the WAVE-orthologue suppressor of cAMP receptor (scar) in Dictyostelium was also ineffective in preventing filopodia protrusion. These data suggest that the molecular mechanism of filopodia formation is conserved throughout evolution from Dictyostelium to mammals and show that lamellipodia and filopodia formation are functionally separable.  相似文献   

13.
The purpose of this study was to determine the effect of hypoxia on caspase-8 and -9 gene and protein expression and activity in corneal epithelium. Non-transformed human corneal epithelial cells (HCEC) were cultured in 2% oxygen. A cDNA expression array coupled with densitometric analysis was used to compare relative mRNA expression levels of 96 apoptosis-related genes in hypoxic and normoxic HCEC. Caspase-8, caspase-9, FLIP, Fas, FasL, and TNF protein expression was assessed further using Western blot analysis and ELISA. Caspase-8 and -9 activities were measured using a fluorometric activity assay. Hypoxia did not affect caspase-8 or -9 gene or protein expression in HCEC, however caspase-9 activity was significantly increased. Hypoxia significantly suppressed the activity of caspase-8. FLIP and Fas gene and protein expression were not significantly altered in hypoxic cells compared to normoxic controls. mRNA and protein levels of TNF and TNFR-1 were significantly decreased, while FasL mRNA and proteins levels were significantly increased in hypoxic HCEC. In corneal epithelium stressed by hypoxia caspase-9 activity is upregulated, suggesting that apoptosis proceeds via the mitochondrial pathway. Caspase-8 activity may be suppressed because the loss of TNF and TNFR-1 gene and protein expression inhibits the initial formation of a death signaling complex.  相似文献   

14.
Caspase-1 activation of caspase-6 in human apoptotic neurons   总被引:2,自引:0,他引:2  
Active caspase-6 (Csp-6) induces cell death in primary cultures of human neurons and is abundant in the neuropathological lesions of Alzheimer's disease. However, the mode of Csp-6 activation is not known. Here, we show that the Csp-1 inhibitor, Z-YVAD-fmk specifically prevents activation of Csp-6 and cell death in human neurons. A transient increase in Csp-1-like activity and an increase in the p23Csp-1 subunit occur early after serum deprivation. Recombinant active Csp-1 (R-Csp-1) cleaves recombinant and neuronal pro-Csp-6 in vitro resulting in Csp-6 activity. However, R-Csp-1 does not induce cell death when microinjected in human neurons despite the inhibition of serum-deprivation induced cell death with a Csp-1 dominant negative construct. These results show that Csp-1 is an upstream positive regulator of Csp-6-mediated cell death in primary human neurons. Furthermore, these results suggest that the activation of Csp-1 must be accompanied by an apoptotic insult to induce Csp-6-mediated cell death.  相似文献   

15.
16.
Adhesion of platelets to laminin in the absence of activation   总被引:3,自引:6,他引:3       下载免费PDF全文
The binding of platelets to components in the subendothelial matrix is an initial event in hemostasis and thrombosis. The glycoprotein components of the matrix are considered important in this interaction. Of these, collagen binds and activates platelets and induces their aggregation. In this study we demonstrate that substrate-bound laminin causes time- and concentration-dependent adherence of human platelets to the substrate. The binding of platelets to laminin was found to be similar in some respects, but different in others, to their binding to surfaces coated with fibronectin or collagen. The binding of platelets to laminin or fibronectin was not associated with their activation under conditions in which type I collagen activates the platelets as measured by [14C]serotonin secretion. Platelets bound to laminin and fibronectin differed in their appearance; they remained rounded on laminin whereas they flattened completely on fibronectin. Binding of platelets to fibronectin, but not laminin, is inhibited by a recently described peptide (Pierschbacher, M., and E. Ruoslahti, 1984, Nature (Lond.), 309:30-33) containing the cell-attachment tetrapeptide sequence of fibronectin, which suggests that separate receptors exist for laminin and fibronectin. These studies establish laminin as a platelet-binding protein and suggest that laminin can contribute to the adhesiveness of exposed tissue matrices to platelets. Since laminin and fibronectin do not activate platelets, whereas collagen does, and laminin differs from fibronectin in that it does not induce spreading of the attached platelets, all three proteins appear to confer different signals to the platelets. Some of these may be related to platelet functions other than those necessary for the formation of a hemostatic plug.  相似文献   

17.
Neuronal active Caspase-6 (Casp6) is associated with Alzheimer disease (AD), cognitive impairment, and axonal degeneration. Caspase-1 (Casp1) can activate Casp6 but the expression and functionality of Casp1-activating inflammasomes has not been well-defined in human neurons. Here, we show that primary cultures of human CNS neurons expressed functional Nod-like receptor protein 1 (NLRP1), absent in melanoma 2, and ICE protease activating factor, but not the NLRP3, inflammasome receptor components. NLRP1 neutralizing antibodies in a cell-free system, and NLRP1 siRNAs in neurons hampered stress-induced Casp1 activation. NLRP1 and Casp1 siRNAs also abolished stress-induced Casp6 activation in neurons. The functionality of the NLRP1 inflammasome in serum-deprived neurons was also demonstrated by NLRP1 siRNA-mediated inhibition of speck formation of the apoptosis-associated speck-like protein containing a caspase recruitment domain conjugated to green fluorescent protein. These results indicated a novel stress-induced intraneuronal NLRP1/Casp1/Casp6 pathway. Lipopolysaccharide induced Casp1 and Casp6 activation in wild-type mice brain cortex, but not in that of Nlrp1−/− and Casp1−/− mice. NLRP1 immunopositive neurons were increased 25- to 30-fold in AD brains compared with non-AD brains. NLRP1 immunoreactivity in these neurons co-localized with Casp6 activity. Furthermore, the NLRP1/Casp1/Casp6 pathway increased amyloid beta peptide 42 ratio in serum-deprived neurons. Therefore, CNS human neurons express functional NLRP1 inflammasomes, which activate Casp1 and subsequently Casp6, thus revealing a fundamental mechanism linking intraneuronal inflammasome activation to Casp1-generated interleukin-1-β-mediated neuroinflammation and Casp6-mediated axonal degeneration.The lack of efficient treatment for Alzheimer disease (AD) is of high social and economical cost and a growing concern with the aging of the world''s population.1 Therapies eliminating amyloid beta peptide (Aβ) from AD brains have unfortunately failed to stem progressive cognitive decline. These disappointing results have forced scientists to reconsider treatments against AD; some focusing on targeting Aβ earlier in disease, while others attempting to disaggregate the Tau protein in neurofibrillary tangles (NFT). Recently, the association of several immune responsive genes with increased AD risks2, 3, 4 have additionally revived interest in a possible etiological role for inflammation in AD.AD brain inflammation is attributed to activated microglia, which remove Aβ, and secrete neurotoxic molecules that induce neurodegeneration. Interleukin-1-beta (IL-1β), a critical component of brain neuroinflammation, is increased in AD brains5 and may contribute to AD pathology by increasing amyloid precursor protein (APP) gene expression, Tau hyperphosphorylation and memory impairment.6 However, anti-inflammatory therapies have not provided the expected beneficial effect in AD patients,7 suggesting that microglial inflammation may be a consequence of AD. Degenerating neurons are renowned initiators of brain inflammatory responses and the loss of synapses remains the best correlative marker of dementia in AD.8 This has incited us to study the response of human neurons to stress and to determine whether specific neuronal molecular events were initiated that link axonal degeneration to an inflammatory response.The active cysteinal Caspase-6 protease (Casp6), associated with axonal degeneration,9, 10, 11, 12, 13 is highly abundant in NFT, neuropil threads, and neuritic plaques of AD brains.14 In some aged non-cognitively impaired individuals, Casp6 activity in the entorhinal cortex and CA1 regions of the hippocampus,15 two areas initially affected by NFT pathology in AD,16 correlates significantly with lower cognitive performance.17 The expression of active Casp6 in CA1 pyramidal neurons of mouse brains is sufficient to induce age-dependent cognitive impairment, in the absence of plaques and tangles, which suggests that active Casp6 in AD brains could be a major contributor to axonal degeneration and cognitive decline.18Despite substantial evidence implicating Casp6 in AD, the pathways leading to Casp6 activation in neurons are unclear. Caspase-1 (Casp1) activates Casp6 in primary cultures of human CNS neurons.19 Inflammasome multiprotein complexes, constituted of danger sensing nucleotide-binding oligomerization domain-like receptors or the DNA sensing absent in melanoma 2 (AIM2) component, and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), recruit and induce Casp1 self-activation.20, 21 Functional Nod-like receptor protein 1 (NLRP1), Nod-like receptor protein 3 (NLRP3), AIM2, and ICE protease activating factor (IPAF-1) inflammasomes have been characterized primarily in peripheral macrophages22 and CNS microglia.23, 24 Recently, reports have indicated inflammasome receptor expression and activation in rodent neurons. Rat cerebellar granule neurons submitted to oxygen and glucose deprivation or reduced potassium levels increased Nlrp1 mRNA levels.25, 26 Nuclear Nlrp1 or functional Nlrp1 inflammasome complexes increased in rat cortical neurons after traumatic brain injury, stroke, and glucose-oxygen deprivation insults.27, 28, 29, 30, 31 Neuronal Nlrp1 increased in rats submitted to spinal cord or sciatic nerve injury,29, 32 and in aging rat hippocampus or ethanol treated hippocampal slice cultures.33, 34 Aim2 induced pyroptosis in rat cortical neuron cultures and traumatic brain injury.35 Nlrp1 has been reported in human brain pyramidal neurons36 and inflammasome receptor mRNAs were observed in human neuron cultures and human Rasmussen''s encephalitis.37Here, we assessed which inflammasome could activate Casp1 and subsequently Casp6 in human primary CNS cultures. We determined which inflammasomes were expressed in naive and stressed neurons and used siRNAs and S-100 cell-free extracts treated with specific inflammasome activators, or antibody blockers, to identify the functional inflammasome. We uncovered that the NLRP1, AIM2, and IPAF-1, but not the NLRP3, inflammasomes were expressed and functional in neurons and that the NLRP1 inflammasome was responsible for Casp1 and subsequently Casp6 activation in serum-deprived and benzylated ATP (BzATP)-stressed neurons. NLRP1 was co-localized with Casp6 activity, immunostained 25- to 30-fold more neurons in AD, and increased Aβ42 in serum-deprived neurons. The NLRP1–Casp1–Casp6 pathway was blocked in lipopolysaccharide (LPS)-treated Nlrp1/ and Casp1/ mice brains. These results reveal a molecular cascade linking neuronal inflammasome-mediated Casp1 activation to Casp6 activation and provide unexpected novel common neuronal therapeutic targets against neuroinflammation, axonal degeneration, and cognitive impairment in AD.  相似文献   

18.
Despite an abundance of literature on the role of caspase-2 in apoptosis, there exists much controversy about this protease making it difficult to place caspase-2 correctly in the apoptotic cascade, and hence its role in apoptosis remains unclear. The identification of the PIDDosome as a signaling platform for caspase-2 activation prompted intense investigation into the true role of this orphan caspase. What has emerged is the idea that caspase-2 may not be mandatory for apoptosis and that activation of this caspase in response to some forms of stress has other effects on the cell such as regulation of cell cycle progression. This idea is particularly relevent to the discovery that caspase-2 may act as a tumor suppressor. Here, we discuss the proposed mechanisms through which caspase-2 signals, in particular those involving PIDD, and their impact on cellular fate.  相似文献   

19.
《Developmental cell》2020,52(3):335-349.e7
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

20.
C Nie  Y Luo  X Zhao  N Luo  A Tong  X Liu  Z Yuan  C Wang  Y Wei 《Cell death & disease》2014,5(10):e1495
The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.The apoptosis pathway is closely related to the Bcl-2 family proteins in which antiapoptotic members sequester multidomain proapoptotic proteins, thereby inhibiting their active role in apoptosis. In contrast, BH3-only proteins that are considered stress sensors can dissociate Bax-like proteins from their antiapoptotic sequestrators, and thus leading to apoptosis.1The expression of Bcl-2 family proteins is regulated during carcinogenesis,1 and the expression of both the Bcl-2 and Bcl-xL antiapoptotic proteins is associated with resistance to antitumor agents such as cisplatin (CP).2 The inhibition of the protective function of antiapoptotic Bcl-2 members can either restore the normal apoptotic process in cancer cells or circumvent resistance to chemotherapy.3,4 In this regard, enhanced expression of BH3-only proteins can effectively bind the antiapoptotic members and prevent the function of these proteins.Some reports suggest that the BH3-only protein Puma has important roles in p53-dependent and -independent apoptosis in human cancer cells and mediates cell death through the Bcl-2 family proteins Bax/Bak and the mitochondrial pathway.5,6 Our studies also reveal that Puma upregulation induces cell apoptosis in chemoresistant ovarian cancer cells,7,8 confirming the requisite role of Puma in chemosensitivity.7-Hydroxystaurosporine (UCN-01) is a protein kinase C-selective inhibitor that is successfully used in phase I and II clinical trials.9,10 As a modulator, UCN-01 enhances the cytotoxicity of other anticancer drugs such as DNA-damaging agents and antimetabolite drugs by putative abrogation of G2- and/or S-phase accumulation induced by these anticancer agents.11 As a single agent, UCN-01 exhibits two key biochemical effects, namely accumulation of cells in the G1 phase of the cell cycle and induction of apoptosis.12 Both these effects may be important for its anticancer activity. Previous studies have demonstrated that UCN-01 potently decreased the levels of activated the phosphorylation level of Akt (p-Akt) in in vitro or in in vivo systems.12, 13, 14 Some researchers have also approved that UCN-01 can modulate Bcl-2 family members to potentiate apoptosis in cancer cells.15,16 These reports suggest that Akt and Bcl-2 family proteins may be the potent targets of UCN-01 to trigger cancer cell apoptosis.In this study, we also investigate the role of Puma in UCN-01-induced apoptosis and confirm that p53-independent Puma induction is pivotal for the anticancer effects of UCN-01. Moreover, we first elucidate the detailed mechanism of Puma-induced apoptosis after UCN-01 treatment. We found that Puma expression mediated caspase-9 and caspase-3 activation. Among the caspase proteins, caspase-9 has a key role in Puma-induced apoptosis. Our data demonstrated that caspase-9 could mediate Puma-induced apoptosis through two feedback pathways. On the one hand, activated caspase-9 was initiated followed by caspase-3 activity, and activated caspase-3 cleaved XIAP in a positive feedback loop to strengthen Puma expression. On the other hand, caspase-9 itself cleaved antiapoptotic Bcl-2 and Bcl-xL to positively enhance Puma induction. These results provide the detailed mechanistic insight into therapeutic response to UCN-01 and the theoretical basis for its applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号