首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic T cells secrete perforin to kill virus-infected cells. In this study we show that perforin also plays a role in immune regulation. Perforin-deficient (perf −/−) mice chronically infected with lymphocytic choriomeningitis virus (LCMV) contained greater numbers of antiviral T cells compared to persistently infected +/+ mice. The enhanced expansion was seen in both CD4 and CD8 T cells, but the most striking difference was in the numbers of LCMV-specific CD8 T cells present in infected perf −/− mice. Persistent LCMV infection of +/+ mice results in both deletion and anergy of antigen-specific CD8 T cells, and our results show that this peripheral “exhaustion” of activated CD8 T cells occurred less efficiently in perf −/− mice. This excessive accumulation of activated CD8 T cells resulted in immune-mediated damage in persistently infected perf −/− mice; ~50% of these mice died within 2 to 4 weeks, and mortality was fully reversed by in vivo depletion of CD8 T cells. This finding highlights an interesting dichotomy between the role of perforin in viral clearance and immunopathology; perforin-deficient CD8 T cells were unable to clear the LCMV infection but were capable of causing immune-mediated damage. Finally, this study shows that perforin also plays a role in regulating T-cell-mediated autoimmunity. Mice that were deficient in both perforin and Fas exhibited a striking acceleration of the spontaneous lymphoproliferative disease seen in Fas-deficient (lpr) mice. Taken together, these results show that the perforin-mediated pathway is involved in downregulating T-cell responses during chronic viral infection and autoimmunity and that perforin and Fas act independently as negative regulators of activated T cells.  相似文献   

2.
The PD-1/PD-L pathway plays a major role in regulating T-cell exhaustion during chronic viral infections in animal models, as well as in humans, and blockade of this pathway can revive exhausted CD8+ T cells. We examined the expression of PD-1 and its ligands, PD-L1 and PD-L2, in multiple tissues during the course of chronic viral infection and determined how the amount of PD-1 expressed, as well as the anatomical location, influenced the function of exhausted CD8 T cells. The amount of PD-1 on exhausted CD8 T cells from different anatomical locations did not always correlate with infectious virus but did reflect viral antigen in some tissues. Moreover, lower expression of PD-L1 in some locations, such as the bone marrow, favored the survival of PD-1Hi exhausted CD8 T cells, suggesting that some anatomical sites might provide a survival niche for subpopulations of exhausted CD8 T cells. Tissue-specific differences in the function of exhausted CD8 T cells were also observed. However, while cytokine production did not strictly correlate with the amount of PD-1 expressed by exhausted CD8 T cells from different tissues, the ability to degranulate and kill were tightly linked to PD-1 expression regardless of the anatomical location. These observations have implications for human chronic infections and for therapeutic interventions based on blockade of the PD-1 pathway.Chronic viral infections are often associated with CD8+ T-cell dysfunction (30). This dysfunction, termed exhaustion, includes defects in the ability to produce antiviral cytokines, poor cytotoxicity, a loss of antigen-independent self-renewal, and the inability to vigorously re-expand following antigen exposure (30). These functional deficiencies contrast with the highly functional memory CD8+ T cells that are generated after acute infection and maintained via interleukin-7 (IL-7)- and IL-15-mediated homeostatic proliferation (30). During chronic viral infections, T-cell exhaustion often correlates with poor control of viral replication (3, 8, 38, 39). Thus, there is considerable interest in developing strategies to reverse exhaustion and restore function in virus-specific CD8+ T cells during chronic infections.Recent studies have revealed an important role for the negative regulatory molecule PD-1 in CD8 T-cell exhaustion during chronic viral infections (29). PD-1, a member of the CD28/CTLA-4 family of costimulatory/coinhibitory receptors, contains both ITIM and ITSM motifs in the intracellular tail and can deliver negative signals, at least partly via recruitment of the phosphatase Shp-2 (29). A role for PD-1 in regulating T-cell responses to chronic viral infections was first observed using lymphocytic choriomeningitis virus (LCMV) infection of mice, where PD-1 was found to be highly expressed on exhausted CD8+ T cells from chronically infected animals but not on functional memory CD8+ T cells from mice that had cleared an acute strain of the virus (3). In vivo blockade of the PD-1 pathway led to a dramatic increase in the number of virus-specific CD8+ T cells, improved functionality of these cells, and enhanced control of viral replication (3). These observations were extended to human chronic viral infections, and a series of studies have demonstrated that human immunodeficiency virus (HIV)-, hepatitis C virus (HCV)-, and HBV-specific CD8+ T cells upregulate PD-1 in humans compared to CD8+ T cells specific for nonpersisting viruses such as influenza virus or vaccinia virus (6-8, 24, 26, 32, 33, 42). Increasing PD-1 expression also correlates with disease status during HIV infection (8, 42). In vitro blockade of PD-1-PD-L interactions can reinvigorate exhausted virus-specific T-cell responses in humans and appears to have a prominent impact on proliferative expansion and/or prevention of apoptosis in these cases (9, 24, 32). Finally, recent results from in vivo blockade in the macaque simian immunodeficiency virus (SIV) infection model demonstrated the effectiveness of blocking PD-1 in primates during chronic viral infection (36). In these studies, PD-1 blockade enhanced virus-specific T and B-cell responses, lowered viral load, and improved the survival of chronically infected animals. Thus, PD-1 has emerged as not only a major regulator of T-cell exhaustion and viral control during chronic infection but also as an important potential therapeutic target.Despite these important studies and the clear impact of PD-1 blockade on the reversal of T-cell exhaustion, important questions remain. For example, previous work has demonstrated that PD-1 expression is not uniform on subsets of exhausted CD8 T cells (4). However, the expression of PD-1 on exhausted CD8 T cells in multiple tissues, and the relationship between PD-1 expression in these tissues to viral load, the PD-1 ligands and function has not been examined. Given the nonlymphoid accumulation of virus-specific CD8 T cells during chronic viral infections (11, 39) and the predilection of many important chronic infections for replicating in anatomically restricted locations (e.g., HCV and the liver, HIV and mucosal tissues, etc.), the dynamics of PD-1 expression by exhausted CD8 T cells outside the blood and spleen could have important therapeutic implications.In the present study we examined these issues using the mouse model of LCMV infection. Our results demonstrate that exhausted CD8 T cells have a wide range of PD-1 expression in different tissues of chronically infected mice. Virus-specific CD8 T cells in some anatomical locations such as the liver, brain, and bone marrow (BM) expressed high PD-1 for substantially longer than virus-specific CD8+ T cells from the spleens or blood of the same mice. Although PD-1 expression in the spleen correlated well with reduced gamma interferon (IFN-γ) and tumor necrosis factor (TNF) production, the PD-1Hi virus-specific CD8+ T cells from the BM remained capable of producing antiviral cytokines ex vivo. In contrast, a strong negative correlation between PD-1 expression and cytotoxicity existed for exhausted CD8 T cells from all tissues tested. PD-L1 expression was high in the spleen, whereas in the BM antigen-presenting cell (APC) populations expressed lower amounts of PD-L1. Survival of PD-1Hi CD8+ T cells from the BM was decreased in the presence of splenic APCs, suggesting that different tissue microenvironments in vivo could selectively support the persistence of PD-1Hi exhausted CD8 T cells. Since PD-1 expression differs by anatomical location, these observations suggest that PD-1 blockade in vivo will have varying impacts on exhausted CD8 T cells from different tissues or anatomical locations. These observations have implications for human chronic infections such as HBV, HCV, and HIV.  相似文献   

3.
Naive T cells in untreated HIV-1 infected individuals have a reduced T-cell receptor excision circle (TREC) content. Previous mathematical models have suggested that this is due to increased naive T-cell division. It remains unclear, however, how reduced naive TREC contents can be reconciled with a gradual loss of naive T cells in HIV-1 infection. We performed longitudinal analyses in humans before and after HIV-1 seroconversion, and used a mathematical model to investigate which processes could explain the observed changes in naive T-cell numbers and TRECs during untreated HIV-1 disease progression. Both CD4+ and CD8+ naive T-cell TREC contents declined biphasically, with a rapid loss during the first year and a much slower loss during the chronic phase of infection. While naive CD8+ T-cell numbers hardly changed during follow-up, naive CD4+ T-cell counts continually declined. We show that a fine balance between increased T-cell division and loss in the peripheral naive T-cell pool can explain the observed short- and long-term changes in TRECs and naive T-cell numbers, especially if T-cell turnover during the acute phase is more increased than during the chronic phase of infection. Loss of thymic output, on the other hand, does not help to explain the biphasic loss of TRECs in HIV infection. The observed longitudinal changes in TRECs and naive T-cell numbers in HIV-infected individuals are most likely explained by a tight balance between increased T-cell division and death, suggesting that these changes are intrinsically linked in HIV infection.  相似文献   

4.
Measles virus (MV) is a highly contagious virus that is transmitted by aerosols. During systemic infection, CD150+ T and B lymphocytes in blood and lymphoid tissues are the main cells infected by pathogenic MV. However, it is unclear which cell types are the primary targets for MV in the lungs and how the virus reaches the lymphoid tissues. In vitro studies have shown that dendritic cell (DC) C-type lectin DC-SIGN captures MV, leading to infection of DCs as well as transmission to lymphocytes. However, evidence of DC-SIGN-mediated transmission in vivo has not been established. Here we identified DC-SIGNhi DCs as first target cells in vivo and demonstrate that macaque DC-SIGN functions as an attachment receptor for MV. Notably, DC-SIGNhi cells from macaque broncho-alveolar lavage and lymph nodes transmit MV to B lymphocytes, providing in vivo support for an important role for DCs in both initiation and dissemination of MV infection.  相似文献   

5.
The infection of woodchucks with woodchuck hepatitis virus (WHV) provides an experimental model to study early immune responses during hepadnavirus infection that cannot be tested in patients. The T-cell response of experimentally WHV-infected woodchucks to WHsAg, rWHcAg, and WHcAg peptides was monitored by observing 5-bromo-2′-deoxyuridine and [2-3H]adenine incorporation. The first T-cell responses were directed against WHsAg 3 weeks after infection; these were followed by responses to rWHcAg including the immunodominant T-cell epitope of WHcAg (amino acids 97 to 110). Maximal proliferative responses were detected when the animals seroconvered to anti-WHs and anti-WHc (week 6). A decrease in the T-cell response to viral antigens coincided with clearance of viral DNA. Polyclonal rWHcAg-specific T-cell lines were established 6, 12, 18, and 24 weeks postinfection, and their responses to WHcAg peptides were assessed. Five to seven peptides including the immunodominant epitope were recognized throughout the observation period (6 months). At 12 months after infection, T-cell responses to antigens and peptides were not detected. Reactivation of T-cell responses to viral antigens and peptides occurred within 7 days after challenge of animals with WHV. These results demonstrate that a fast and vigorous T-cell response to WHsAg, rWHcAg, and amino acids 97 to 110 of the WHcAg occurs within 3 weeks after WHV infection. The peak of this response was associated with viral clearance and may be crucial for recovery from infection. One year after infection, no proliferation of T cells in response to antigens was observed; however, the WHV-specific T-cell response was reactivated after challenge of woodchucks with WHV and may be responsible for protection against WHV reinfection.  相似文献   

6.
[目的]摸清STLV-1感染现状,从而有效地降低STLV-1在猕猴、食蟹猴群中的的感染率。[方法]采用STLV-1ELISA法对猕猴、食蟹猴血清进行抗体检测。结果本中心送美国BioReliance公司的2455只出口猴血清,103份血清呈STLV-1抗体阳性,19份血清呈STLV-1抗体可疑,其余血清均为STLV-1抗体阴性。[结论]猕猴、食蟹猴群中STLV-1的平均感染率为4.97%,其中猕猴STLV-1感染率为2.7%,食蟹猴STLV-1感染率为5.4%,是猕猴STLV-1感染率的2倍;随着年龄的增长,猕猴(食蟹猴)STLV-1的感染率也随之升高。  相似文献   

7.
Infection of non-human primates (NHPs) such as rhesus and cynomolgus macaques with monkeypox virus (MPXV) or cowpox virus (CPXV) serve as models to study poxvirus pathogenesis and to evaluate vaccines and anti-orthopox therapeutics. Intravenous inoculation of macaques with high dose of MPXV (>1–2×107 PFU) or CPXV (>102 PFU) results in 80% to 100% mortality and 66 to 100% mortality respectively. Here we report that NHPs with positive detection of poxvirus antigens in immune cells by flow cytometric staining, especially in monocytes and granulocytes succumbed to virus infection and that early positive pox staining is a strong predictor for lethality. Samples from four independent studies were analyzed. Eighteen NHPs from three different experiments were inoculated with two different MPXV strains at lethal doses. Ten NHPs displayed positive pox-staining and all 10 NHPs reached moribund endpoint. In contrast, none of the three NHPs that survived anticipated lethal virus dose showed apparent virus staining in the monocytes and granulocytes. In addition, three NHPs that were challenged with a lethal dose of MPXV and received cidofovir treatment were pox-antigen negative and all three NHPs survived. Furthermore, data from a CPXV study also demonstrated that 6/9 NHPs were pox-antigen staining positive and all 6 NHPs reached euthanasia endpoint, while the three survivors were pox-antigen staining negative. Thus, we conclude that monitoring pox-antigen staining in immune cells can be used as a biomarker to predict the prognosis of virus infection. Future studies should focus on the mechanisms and implications of the pox-infection of immune cells and the correlation between pox-antigen detection in immune cells and disease progression in human poxviral infection.  相似文献   

8.
The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8+ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4+ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a+ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses.  相似文献   

9.
Severe primary respiratory syncytial virus (RSV) infections are characterized by bronchiolitis accompanied by wheezing. Controversy exists as to whether infants suffer from virus-induced lung pathology or from excessive immune responses. Furthermore, detailed knowledge about the development of primary T-cell responses to viral infections in infants is lacking. We studied the dynamics of innate neutrophil and adaptive T-cell responses in peripheral blood in relation to theviral load and parameters of disease in infants admitted to the intensive care unit with severe RSV infection. Analysis of primary T-cell responses showed substantial CD8+ T-cell activation, which peaked during convalescence. A strong neutrophil response, characterized by mobilization of bone marrow-derived neutrophil precursors, preceded the peak in T-cell activation. The kinetics of this neutrophil response followed the peak of clinical symptoms and the viral load with a 2- to 3-day delay. From the sequence of events, we conclude that CD8+ T-cell responses, initiated during primary RSV infections, are unlikely to contribute to disease when it is most severe. The mobilization of precursor neutrophils might reflect the strong neutrophil influx into the airways, which is a characteristic feature during RSV infections and might be an integral pathogenic process in the disease.Viral infections are characterized by a dynamic interplay between the pathogen and defensive innate and adaptive immune responses of the host (35, 38). Upon infection, virus-specific structural components are recognized by pattern recognition receptors of the host, which triggers a mechanism aimed at the suppression of virus replication and eventually virus elimination. Each virus has a characteristic signature of triggering innate immune receptors and methods to counteract immune responses of the host, which ultimately results in an immune response tailored to the particular properties of the infecting virus (6).Most insights into the sequence of events occurring during viral infections have been obtained from animal experiments, where the immunological control of viral infections can be studied in detail. In many murine models, the crucial role of CD8+ T cells in complete elimination of the virus during acute infections has been well established (9, 20, 27). However, both virus-induced damage and immune pathology might contribute to the disease, depending on the type of viral infection and/or the intensity of the innate and adaptive immune responses triggered (10, 20, 37, 41, 49, 60).Primary infections with respiratory syncytial virus (RSV) can cause severe bronchiolitis and pneumonia in infants (24). For RSV, the mouse is not a good model to study primary disease because the virus replicates poorly in murine cells. Hence, to obtain insight into the mechanism of disease caused by RSV, infection studies in humans or nonhuman primate models are needed. We and others have shown that RSV infection causes a strong influx of neutrophils into the airways (15, 25, 48). In addition, we have recently shown that substantial virus-specific CD8+ T-cell responses can be elicited in infants with severe RSV infections (25). However, it is still a controversial issue whether the severe manifestations of lower respiratory tract disease are caused directly by the virus or by innate and/or adaptive immune responses triggered by RSV (8, 20, 31, 57). In our previous work, we found no relation between the severity of disease and the number of virus-specific CD8+ T cells in peripheral blood (25). Moreover, a direct role of the viral load or different viral strains in disease severity has not been established convincingly (11, 59).Data on the development of primary T-cell responses in infants (<6 months old) during acute viral infections and after vaccinations are sparse. It is generally accepted that the infant immune system is immature and less effective than that of older children or adults. This has been shown by lower activation and/or Th2-polarized adaptive immune responses (1, 2, 58). For RSV-induced disease, it has been suggested that a Th2-biased immune response might be correlated with disease (39, 45, 50), but this idea has been challenged by others (4, 7, 12).Currently, there is no RSV vaccine, and the only preventive treatment available is a humanized neutralizing antibody specific for the fusion protein of RSV that is administered to high-risk groups and is effective in about 60% of children (29). Immune-suppressive or antiviral treatments during severe RSV disease have marginal to no effect (3, 23, 55). Insights into the kinetics of the viral load and disease course in relation to activation of the innate and adaptive immune response will shed light on factors that are attributed to severe RSV-induced disease and will possibly provide leads for the development of curative treatment. We therefore monitored the dynamics of these parameters in infants admitted to the pediatric intensive care unit (ICU) with severe primary RSV infections. During primary RSV infection, the peak values of the viral load and disease severity were followed by the exhaustion of the peripheral blood neutrophil pool, indicating a strong innate immune response closely associated with the peak of disease. We further showed that this natural respiratory infection elicited a strong primary CD8+ T-cell response in the very young patients (<3 months). This T-cell response was undetectable at the moment of hospitalization, when the infants were severely ill, and peaked at convalescence. Therefore, severe primary RSV disease does not seem to be caused by inadequate or exaggerated T-cell responses but is most likely initiated by viral damage followed by intense innate immune processes.  相似文献   

10.
11.
Bovine viral diarrhoea virus (BVDV) infection of cattle causes a diverse range of clinical outcomes from being asymptomatic, or a transient mild disease, to producing severe cases of acute disease leading to death. Four groups of calves were challenged with a type 1 BVDV strain, originating from a severe outbreak of BVDV in England, to study the effect of viral dose and immunosuppression on the viral replication and transmission of BVDV. Three groups received increasing amounts of virus: Group A received 102.55TCID50/ml, group B 105.25TCID50/ml and group C 106.7TCID 50/ml. A fourth group (D) was inoculated with a medium dose (105.25TCID50/ml) and concomitantly treated with dexamethasone (DMS) to assess the effects of chemically induced immunosuppression. Naïve calves were added as sentinel animals to assess virus transmission. The outcome of infection was dose dependent with animals given a higher dose developing severe disease and more pronounced viral replication. Despite virus being shed by the low-dose infection group, BVD was not transmitted to sentinel calves. Administration of dexamethasone (DMS) resulted in more severe clinical signs, prolonged viraemia and virus shedding. Using PCR techniques, viral RNA was detected in blood, several weeks after the limit of infectious virus recovery. Finally, a recently developed strand-specific RT-PCR detected negative strand viral RNA, indicative of actively replicating virus, in blood samples from convalescent animals, as late as 85 days post inoculation. This detection of long term replicating virus may indicate the way in which the virus persists and/or is reintroduced within herds.  相似文献   

12.
The type I interferons (IFN-Is) are critical not only in early viral control but also in prolonged T-cell immune responses. However, chronic viral infections such as those of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in humans and lymphocytic choriomeningitis virus (LCMV) in mice overcome this early IFN-I barrier and induce viral persistence and exhaustion of T-cell function. Although various T-cell-intrinsic and -extrinsic factors are known to contribute to induction of chronic conditions, the roles of IFN-I negative regulators in chronic viral infections have been largely unexplored. Herein, we explored whether 2′–5′ oligoadenylate synthetase-like 1 (OASL1), a recently defined IFN-I negative regulator, plays a key role in the virus-specific T-cell response and viral defense against chronic LCMV. To this end, we infected Oasl1 knockout and wild-type mice with LCMV CL-13 (a chronic virus) and monitored T-cell responses, serum cytokine levels, and viral titers. LCMV CL-13-infected Oasl1 KO mice displayed a sustained level of serum IFN-I, which was primarily produced by splenic plasmacytoid dendritic cells, during the very early phase of infection (2–3 days post-infection). Oasl1 deficiency also led to the accelerated elimination of viremia and induction of a functional antiviral CD8 T-cell response, which critically depended on IFN-I receptor signaling. Together, these results demonstrate that OASL1-mediated negative regulation of IFN-I production at an early phase of infection permits viral persistence and suppresses T-cell function, suggesting that IFN-I negative regulators, including OASL1, could be exciting new targets for preventing chronic viral infection.  相似文献   

13.
The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection.  相似文献   

14.

Background

During untreated, chronic HIV-1 infection, plasma viral load (VL) is a relatively stable quantitative trait that has clinical and epidemiological implications. Immunogenetic research has established various human genetic factors, especially human leukocyte antigen (HLA) variants, as independent determinants of VL set-point.

Methodology/Principal Findings

To identify and clarify HLA alleles that are associated with either transient or durable immune control of HIV-1 infection, we evaluated the relationships of HLA class I and class II alleles with VL among 563 seroprevalent Zambians (SPs) who were seropositive at enrollment and 221 seroconverters (SCs) who became seropositive during quarterly follow-up visits. After statistical adjustments for non-genetic factors (sex and age), two unfavorable alleles (A*3601 and DRB1*0102) were independently associated with high VL in SPs (p<0.01) but not in SCs. In contrast, favorable HLA variants, mainly A*74, B*13, B*57 (or Cw*18), and one HLA-A and HLA-C combination (A*30+Cw*03), dominated in SCs; their independent associations with low VL were reflected in regression beta estimates that ranged from −0.47±0.23 to −0.92±0.32 log10 in SCs (p<0.05). Except for Cw*18, all favorable variants had diminishing or vanishing association with VL in SPs (p≤0.86).

Conclusions/Significance

Overall, each of the three HLA class I genes had at least one allele that might contribute to effective immune control, especially during the early course of HIV-1 infection. These observations can provide a useful framework for ongoing analyses of viral mutations induced by protective immune responses.  相似文献   

15.
Deciphering immune events during early stages of human immunodeficiency virus type 1 (HIV-1) infection is critical for understanding the course of disease. We characterized the hierarchy of HIV-1-specific T-cell gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses during acute subtype C infection in 53 individuals and associated temporal patterns of responses with disease progression in the first 12 months. There was a diverse pattern of T-cell recognition across the proteome, with the recognition of Nef being immunodominant as early as 3 weeks postinfection. Over the first 6 months, we found that there was a 23% chance of an increased response to Nef for every week postinfection (P = 0.0024), followed by a nonsignificant increase to Pol (4.6%) and Gag (3.2%). Responses to Env and regulatory proteins appeared to remain stable. Three temporal patterns of HIV-specific T-cell responses could be distinguished: persistent, lost, or new. The proportion of persistent T-cell responses was significantly lower (P = 0.0037) in individuals defined as rapid progressors than in those progressing slowly and who controlled viremia. Almost 90% of lost T-cell responses were coincidental with autologous viral epitope escape. Regression analysis between the time to fixed viral escape and lost T-cell responses (r = 0.61; P = 0.019) showed a mean delay of 14 weeks after viral escape. Collectively, T-cell epitope recognition is not a static event, and temporal patterns of IFN-γ-based responses exist. This is due partly to viral sequence variation but also to the recognition of invariant viral epitopes that leads to waves of persistent T-cell immunity, which appears to associate with slower disease progression in the first year of infection.For more than a decade, there has been a wealth of evidence to show that human immunodeficiency virus (HIV)-specific cytotoxic T-cell (CTL) responses play a role in the control of HIV-1 and simian immunodeficiency virus (SIV) infection. In humans, the first appearance of CTL in primary HIV-1 infection coincides with the decline of peak viremia (7, 27), while depletion of CD8+ T cells in SIV infection resulted in elevated viremia (45). Additionally, polymorphisms in HLA class I-restricted CTL responses are associated with differential HIV-1 disease outcomes (25), and the emergence of viral escape within CTL epitopes during acute and chronic SIV or HIV-1 infection demonstrates the effectiveness of CD8+ T cells to exert viral selection pressure (21). Dissecting the specificity of HIV-1-specific CD8+ T-cell responses that associate with the control of viral replication during acute/early infection is thought to be critical for the design of vaccines and potential immunotherapeutic strategies aimed at stimulating these responses.Preferential targeting of class I-restricted CTL epitopes in Gag during early and chronic HIV-1 infection has been associated with lower viral loads (15, 25, 34, 48, 55), whereas Env- and Nef-specific CD8+ T-cell responses have been associated with higher viremia (15, 34, 55). Increasing evidence suggests that patterns of immunodominant HIV-specific CD8+ T-cell responses restricted by specific HLA alleles are major determinants of the viral set point (47). In addition, Goonetilleke et al. (17) have provided insight into the rapidity of early escape and the contribution of the first HIV-specific CD8+ T-cell responses to the transmitted/founder virus in control of acute viremia. The restriction of CTL epitopes by HLA-B*5801, for example, has also been associated with better viral control (16, 24). However, the temporal nature of epitope-specific responses that associate with viral control has not been explored. Recently, we found no association between the magnitude and breadth of gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses at a static 3-month time point with the viral set point at 12 months (22). The unpredictability of early T-cell responses with later viral control could be a result of HIV variability resulting in epitope escape from humoral and T-cell pressure (1, 8). For example, the impact of CTL pressure on shaping viral diversity at a human population level has been observed through HLA imprinting (6, 9, 44), and several studies have shown that certain selected escape mutations can compromise viral fitness (10, 29, 33, 39). Other studies have also demonstrated that the selection of escape variants in chronic HIV-1 and SIV infection can result in the loss of immune control and disease progression (3, 20). Assessing the nature of T-cell responses longitudinally and relating the patterns of contemporaneous viral recognition with viral diversity may represent alternative insights into factors associated with set point and disease progression.As the global AIDS epidemic continues to expand in sub-Saharan Africa, and South Africa in particular, the need to implement a preventive vaccine through the public health sector remains paramount. To date, several prototype antibody and T-cell-based candidate vaccine trials have been completed worldwide (37), and the recent failure of a phase IIb Ad5-Gag-Pol-Nef HIV-1 vaccine trial has emphasized the challenge of producing an effective T-cell-based vaccine against HIV. Data from the recent ALVAC and AIDSVAX (RV144) trials in Thailand have provided modest efficacy of a vaccine regimen in reducing HIV infection (42), and while the immune mechanisms for this are as yet unclear, these findings have created a platform for identifying immune responses that correlate with protection.The identification of the earliest targets of T cells during acute HIV-1 infection would be helpful in understanding the evolution of immunity when a host first encounters the virus and also would provide insight into the host-pathogen interplay when there is a rapidly changing target. We describe some of the earliest T-cell responses that occur during acute subtype C HIV-1 infection, how these change over time and associate with early disease progression, as well as the kinetics of these changes in relation to autologous viral escape.  相似文献   

16.
17.

Background and Aims

The PNPLA3 I148M sequence variant favors hepatic lipid accumulation and confers susceptibility to hepatic fibrosis and hepatocellular carcinoma. The aim of this study was to estimate the effect size of homozygosity for the PNPLA3 I148M variant (148M/M) on the fibrosis progression rate (FPR) and the interaction with age at infection in chronic hepatitis C (CHC).

Methods

FPR was estimated in a prospective cohort of 247 CHC patients without alcohol intake and diabetes, with careful estimation of age at infection and determination of fibrosis stage by Ishak score.

Results

Older age at infection was the strongest determinant of FPR (p<0.0001). PNPLA3 148M/M was associated with faster FPR in individuals infected at older age (above the median, 21 years; −0.64±0.2, n = 8 vs. −0.95±0.3, n = 166 log10 FPR respectively; p = 0.001; confirmed for lower age thresholds, p<0.05), but not in those infected at younger age (p = ns). The negative impact of PNPLA3 148M/M on fibrosis progression was more marked in subjects at risk of altered hepatic lipid metabolism (those with grade 2–3 steatosis, genotype 3, and overweight; p<0.05). At multivariate analysis, PNPLA3 148M/M was associated with FPR (incremental effect 0.08±0.03 log10 fibrosis unit per year; p = 0.022), independently of several confounders, and there was a significant interaction between 148M/M and older age at infection (p = 0.025). The association between 148M/M and FPR remained significant even after adjustment for steatosis severity (p = 0.032).

Conclusions

We observed an interaction between homozygosity for the PNPLA3 I148M variant and age at infection in determining fibrosis progression in CHC patients.  相似文献   

18.
目的比较H5N1禽流感病毒感染小鼠、恒河猴及食蟹猴急性期肺组织的病理学变化。方法在麻醉状态下对BALB/c小鼠、恒河猴及食蟹猴进行H5N1病毒滴鼻接种,在感染急性期实施安死术,取肺组织运用H&E结合免疫组化技术分析肺组织的病理变化。结果BALB/c小鼠感染急性期,肺组织以变质性炎为主,肺泡结构被广泛破坏,以单核细胞为主的炎细胞浸润,局部可见渗出性炎。而在恒河猴感染急性期肺组织病理改变以渗出性炎为主,同时可见变质性炎和增生性炎。在食蟹猴感染急性期肺组织病理改变以渗出性和变质性炎为主,同时亦可见上皮的新生。结论H5N1禽流感病毒感染小鼠与恒河猴、食蟹猴急性期肺组织的病理变化不同,这将为进一步认识禽流感的发病机制及研究针对性的治疗方法提供一些理论依据。  相似文献   

19.
20.
The high-affinity in vivo interaction between soluble HIV-1 envelope glycoprotein (Env) immunogens and primate CD4 results in conformational changes that alter the immunogenicity of the gp120 subunit. Because the conserved binding site on gp120 that directly interacts with CD4 is a major vaccine target, we sought to better understand the impact of in vivo Env-CD4 interactions during vaccination. Rhesus macaques were immunized with soluble wild-type (WT) Env trimers, and two trimer immunogens rendered CD4 binding defective through distinct mechanisms. In one variant, we introduced a mutation that directly disrupts CD4 binding (368D/R). In the second variant, we introduced three mutations (423I/M, 425N/K, and 431G/E) that disrupt CD4 binding indirectly by altering a gp120 subdomain known as the bridging sheet, which is required for locking Env into a stable interaction with CD4. Following immunization, Env-specific binding antibody titers and frequencies of Env-specific memory B cells were comparable between the groups. However, the quality of neutralizing antibody responses induced by the variants was distinctly different. Antibodies against the coreceptor binding site were elicited by WT trimers but not the CD4 binding-defective trimers, while antibodies against the CD4 binding site were elicited by the WT and the 423I/M, 425N/K, and 431G/E trimers but not the 368D/R trimers. Furthermore, the CD4 binding-defective trimer variants stimulated less potent neutralizing antibody activity against neutralization-sensitive viruses than WT trimers. Overall, our studies do not reveal any potential negative effects imparted by the in vivo interaction between WT Env and primate CD4 on the generation of functional T cells and antibodies in response to soluble Env vaccination.The HIV-1 Envs mediate the entry of the virus into target cells and are the only virally encoded proteins exposed on the surface of the virus. HIV-1 Env is the sole target for neutralizing antibodies (Abs) and therefore is an important component of a vaccine designed to elicit protective antibody responses (4, 20). The viral spike is a trimer comprised of three heterodimers of the exterior envelope glycoprotein, gp120, noncovalently attached to the transmembrane protein, gp41. The gp120 subunit binds the primary receptor, CD4 (7), to form or to expose the gp120 coreceptor binding elements, which interact with the viral coreceptor, primarily CCR5 (1, 9, 12, 45). The highly conserved coreceptor binding site (CoRbs) overlaps the gp120 bridging sheet and also contains both proximal and distal elements of V3 (18, 32, 43, 45).In attempts to mimic the native trimeric structure of Env present on the virus, various forms of soluble Env trimers were designed (reviewed in reference 14). One design consists of cleavage-defective trimers derived from the primary R5 isolate YU2 that possess a heterologous trimerization motif derived from T4 bacteriophage fibritin (F; YU2 gp140-F) (3, 21, 34, 40, 50, 51). We recently demonstrated that the immunization of monkeys, but not rabbits, with gp140-F trimers resulted in the generation of Abs directed against the CoRbs of gp120 capable of cross-neutralizing HIV-2 (15). CoRbs-directed Abs (also referred to as CD4-induced, or CD4i, Abs) also were elicited in rabbits transgenic for human CD4 (15). Taken together, these data strongly suggest that Env interacts with high-affinity primate CD4 in vivo, resulting in the formation, or exposure, of a highly immunogenic gp120 determinant that overlaps the CoRbs. Early in infection, the frequency of HIV-1-infected individuals with significant antibody responses against the CoRbs is high (8, 33), and CoRbs-directed antibody responses are elicited abundantly in humans inoculated with Env-based immunogens (15). Collectively, these data suggest that the recognition of the HIV-1 CoRbs by naïve B cells is greatly increased when Env is presented in complex with high-affinity primate CD4, leading to a productive Ab response against this epitope (41). With rare exceptions, the majority of CoRbs-directed monoclonal antibodies (MAbs) do not neutralize HIV-1 primary viruses in vitro, bringing into question the utility of this region as a relevant neutralization target (23, 31, 47, 49). Strategies aimed to diminish vaccine-elicited B-cell responses to the CoRbs, and shift responses toward more accessible neutralization targets, represent one approach to improve the design of Env-based vaccine candidates. The selective manipulation of Env immunogens to decrease their CD4 binding capacity may reduce the elicitation of CoRbs-directed Abs and circumvent potential occlusion effects of the conserved CD4 binding site caused by CD4 itself.In addition to the potential effects of in vivo Env-CD4 interactions on the Ab repertoire elicited by Env-based immunogens, interactions between Env and CD4 also may have consequences on CD4+ T-cell responses. CD4 is an important costimulatory molecule expressed on several subsets of T cells and antigen-presenting cells, and interactions with Env were shown to alter the function of CD4-expressing T cells in a number of in vitro systems (13, 37, 44). The elimination of the Env-CD4 interaction in the context of vaccination may be beneficial to improve the elicitation of helper T-cell responses and effective neutralizing Ab responses. In vivo evaluation in subjects possessing high-affinity CD4 (i.e., rhesus macaques or humans) of CD4 binding-competent and CD4 binding-deficient Env immunogens so far have not been described.To address these questions, we designed Env trimer variants rendered CD4 binding defective through two distinct mechanisms. In the first variant, the interaction between CD4 and HIV-1 Env was directly disrupted by the introduction of a mutation (368D/R) in the CD4 binding loop of the gp120 outer domain (29). This alteration abolishes the initial binding of CD4 and most CD4 binding site (CD4bs)-directed MAbs (42) to variant forms of gp120 and would be expected to do the same in the soluble stable timer context. The aim of the second variant was to decrease the CD4 binding affinity while preserving the antigenicity of the CD4bs (48). This variant was generated in the soluble gp140-F trimers by the introduction of three point mutations, 423I/M, 425N/K, and 431G/E, in the β20 strand region of gp120. These mutations were suggested to favor a helix rather than the β20/21 antiparallel strands visible in the gp120 structure (23, 31, 47, 49). In the monomeric context, mutations in the β20 strand region of gp120 abolish binding by CoRbs-directed Abs, presumably because the bridging sheet cannot form (48). The introduction of the 423I/M, 425N/K, and 431G/E mutations in the trimer context therefore should disrupt the normally high-affinity gp120-CD4 interaction, while recognition by CD4bs Abs would not be affected. Indeed, a recent study provides a mechanistic basis for the impact of these mutations on CD4 binding (52). This study revealed that CD4 interacts with gp120 by a two-step binding mechanism in which the first step involves a direct, but low-affinity, CD4 interaction with the gp120 outer domain, while the second step requires a conformational change in gp120 to fully stabilize the high-affinity gp120-CD4 interaction.Here, we exploit this two-step model to generate novel CD4 binding-defective soluble trimers that, unlike the 368D/R trimers, possess a CD4bs surface that retains recognition by well-described CD4bs Abs. By immunizing rhesus macaques with the wild-type (WT) and CD4 binding-defective trimer variants, we demonstrate that similar levels of Env-specific Ab and T-cell responses were elicited in the three groups, suggesting that in vivo interactions between CD4 binding-competent (WT) Env and CD4 do not measurably affect T-cell responses against Env in this immunization regimen. However, the quality of the Ab response was markedly different between the groups. As hypothesized, CoRbs-directed Abs were elicited only in animals inoculated with WT trimers and not in those inoculated with 368D/R or 423I/M, 425N/K, and 431G/E trimers (hereafter referred to as 368 and 423/425/431 trimers, respectively). Importantly, we show that the 423/425/431 trimers retain the capacity to elicit binding and neutralizing CD4bs-directed Abs. In conclusion, the results generated in this study suggest that CD4 engagement by the WT soluble Env trimers did not impair the overall magnitude of the elicited Env-specific antibody or T-cell responses. Furthermore, our data provide new insights into the characteristics of Env that impact immunogenicity. The data also provide a potential path forward for the design of Env immunogens that have the capacity to elicit neutralizing Abs against the conserved gp120 CD4 binding surface while eliminating both the elicitation of nonneutralizing CoRbs-directed Abs and the potential occlusion of the CD4 binding surface of gp120 by the engagement of the primary virus receptor, CD4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号