首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis is the focus of several investigations for design of newer drugs, as tuberculosis remains a major epidemic despite the availability of several drugs and a vaccine. Mycobacteria owe many of their unique qualities to mycolic acids, which are known to be important for their growth, survival, and pathogenicity. Mycolic acid biosynthesis has therefore been the focus of a number of biochemical and genetic studies. It also turns out to be the pathway inhibited by front-line anti-tubercular drugs such as isoniazid and ethionamide. Recent years have seen the emergence of systems-based methodologies that can be used to study microbial metabolism. Here, we seek to apply insights from flux balance analyses of the mycolic acid pathway (MAP) for the identification of anti-tubercular drug targets. We present a comprehensive model of mycolic acid synthesis in the pathogen M. tuberculosis involving 197 metabolites participating in 219 reactions catalysed by 28 proteins. Flux balance analysis (FBA) has been performed on the MAP model, which has provided insights into the metabolic capabilities of the pathway. In silico systematic gene deletions and inhibition of InhA by isoniazid, studied here, provide clues about proteins essential for the pathway and hence lead to a rational identification of possible drug targets. Feasibility studies using sequence analysis of the M. tuberculosis H37Rv and human proteomes indicate that, apart from the known InhA, potential targets for anti-tubercular drug design are AccD3, Fas, FabH, Pks13, DesA1/2, and DesA3. Proteins identified as essential by FBA correlate well with those previously identified experimentally through transposon site hybridisation mutagenesis. This study demonstrates the application of FBA for rational identification of potential anti-tubercular drug targets, which can indeed be a general strategy in drug design. The targets, chosen based on the critical points in the pathway, form a ready shortlist for experimental testing.  相似文献   

2.

Background

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) are global health problems. We sought to determine the characteristics, prevalence, and relative frequency of transmission of MDR and XDR TB in Shanghai, one of the largest cities in Asia.

Methods

TB is diagnosed in district TB hospitals in Shanghai, China. Drug susceptibility testing for first-line drugs was performed for all culture positive TB cases, and tests for second-line drugs were performed for MDR cases. VNTR-7 and VNTR-16 were used to genotype the strains, and prior treatment history and treatment outcomes were determined for each patient.

Results

There were 4,379 culture positive TB cases diagnosed with drug susceptibility test results available during March 2004 through November 2007. 247 (5.6%) were infected with a MDR strain of M. tuberculosis and 11 (6.3%) of the 175 MDR patients whose isolate was tested for susceptibility to second-line drugs, were XDR. More than half of the patients with MDR and XDR were newly diagnosed and had no prior history of TB treatment. Nearly 57% of the patients with MDR were successfully treated.

Discussion

Transmission of MDR and XDR strains is a serious problem in Shanghai. While a history of prior anti-TB treatment indicates which individuals may have acquired MDR or XDR TB, it does not accurately predict which TB patients have disease caused by transmission of MDR and XDR strains. Therefore, universal drug susceptibility testing is recommended for new and retreatment TB cases.  相似文献   

3.
Tuberculosis caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (MTB) strains is a growing problem in many countries. The availability of the complete nucleotide sequences of several MTB genomes allows to use the comparative genomics as a tool to study the relationships of strains and differences in their evolutionary history including acquisition of drug-resistance. In our work, we sequenced three genomes of Russian MTB strains of different phenotypes – drug susceptible, MDR and XDR. Of them, MDR and XDR strains were collected in Tomsk (Siberia, Russia) during the local TB outbreak in 1998–1999 and belonged to rare KQ and KY families in accordance with IS6110 typing, which are considered endemic for Russia. Based on phylogenetic analysis, our isolates belonged to different genetic families, Beijing, Ural and LAM, which made the direct comparison of their genomes impossible. For this reason we performed their comparison in the broader context of all M. tuberculosis genomes available in GenBank. The list of unique individual non-synonymous SNPs for each sequenced isolate was formed by comparison with all SNPs detected within the same phylogenetic group. For further functional analysis, all proteins with unique SNPs were ascribed to 20 different functional classes based on Clusters of Orthologous Groups (COG). We have confirmed drug resistant status of our isolates that harbored almost all known drug-resistance associated mutations. Unique SNPs of an XDR isolate CTRI-4XDR, belonging to a Beijing family were compared in more detail with SNPs of additional 14 Russian XDR strains of the same family. Only type specific mutations in genes of repair, replication and recombination system (COG category L) were found common within this group. Probably the other unique SNPs discovered in CTRI-4XDR may have an important role in adaptation of this microorganism to its surrounding and in escape from antituberculosis drugs treatment.  相似文献   

4.
The emergence of multidrug resistant tuberculosis (MDRTB) highlights the urgent need to understand the mechanisms of resistance to the drugs and to develop a new arena of therapeutics to treat the disease. Ethambutol, isonazid, pyrazinamide, rifampicin are first line of drugs against TB, whereas aminoglycoside, polypeptides, fluoroquinolone, ethionamide are important second line of bactericidal drugs used to treat MDRTB, and resistance to one or both of these drugs are defining characteristic of extensively drug resistant TB. We retrieved 1,221 resistant genes from Antibiotic Resistance Gene Database (ARDB), which are responsible for resistance against first and second line antibiotics used in treatment of Mycobacterium tuberculosis infection. From network analysis of these resistance genes, 53 genes were found to be common. Phylogenetic analysis shows that more than 60% of these genes code for acetyltransferase. Acetyltransferases detoxify antibiotics by acetylation, this mechanism plays central role in antibiotic resistance. Seven acetyltransferase (AT-1 to AT-7) were selected from phylogenetic analysis. Structural alignment shows that these acetyltransferases share common ancestral core, which can be used as a template for structure based drug designing. From STRING analysis it is found that acetyltransferase interact with 10 different proteins and it shows that, all these interaction were specific to M. tuberculosis. These results have important implications in designing new therapeutic strategies with acetyltransferase as lead co-target to combat against MDR as well as Extreme drug resistant (XDR) tuberculosis.

Abbreviations

AA - amino acid, AT - Acetyltransferase, AAC - Aminoglycoside 2''-N-acetyltransferase, XDR - Extreme drug-resistant, MDR - Multidrug-resistant, Mtb - Mycobacterium tuberculosis, TB - Tuberculosis.  相似文献   

5.
Bacterial drug resistance is often associated with a fitness cost. Large outbreaks of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB have been described that predominately affect persons with HIV infection. We obtained four closely-related Mycobacterium tuberculosis strains (genotype F15/LAM4/KZN) from an outbreak in KwaZulu-Natal (KZN), South Africa, including drug-sensitive, MDR, and XDR clinical isolates. We compared the virulence of these strains in a murine model of aerosol M. tuberculosis infection for four phenotypes: (1) competitive in vivo growth in lung and spleen, (2) non-competitive in vivo growth in lung and spleen, (3) murine survival time, and (4) lung pathology. When mixtures of sensitive, MDR, and XDR KZN strains were aerosolized (competitive model), lung CFUs were similar at 60 days after infection, and spleen CFUs were ordered as follows: sensitive > MDR > XDR. When individual strains were aerosolized (non-competitive model), modest differences in lung and spleen CFUs were observed with the same ordering. C57BL/6, C3H/FeJ, and SCID mice all survived longer after infection with MDR as compared to sensitive strains. SCID mice infected with an XDR strain survived longer than those infected with MDR or sensitive strains. Lung pathology was reduced after XDR TB infection compared to sensitive or MDR TB infection. In summary, increasing degrees of drug resistance were associated with decreasing murine virulence in this collection of KZN strains as measured by all four virulence phenotypes. The predominance of HIV-infected patients in MDR and XDR TB outbreaks may be explained by decreased virulence of these strains in humans.  相似文献   

6.
Treatment of tuberculosis still represent a major public health issue. The emergence of multi-and extensively-drug resistant (MDR and XDR) Mycobacterium tuberculosis clinical strains further pinpoint the urgent need for new anti-tuberculous drugs. We previously showed that vancomycin can target mycobacteria lacking cell wall integrity, especially those lacking related phthiocerol and phthiodolone dimycocerosates, PDIM A and PDIM B, respectively. As aloe emodin was previously hypothesized to be able to target the synthesis of mycobacterial cell wall lipids, we tested its ability to potentiate glycopeptides antimycobacterial activity. The aloe emodin with the vancomycin induced a combination effect beyond simple addition, close to synergism, at a concentration lower to reported IC50 cytotoxic value, on M. bovis BCG and on H37Rv M. tuberculosis. Interestingly, out of six MDR and pre-XDR clinical strains, one showed a strong synergic susceptibility to the drug combination. Mycobacterial cell wall lipid analyses highlighted a selective reduction of PDIM B by aloe emodin.  相似文献   

7.
A great challenge is posed to the treatment of tuberculosis due to the evolution of multidrug-resistant (MDR) and extensively drugresistant (XDR) strains of Mycobacterium tuberculosis in recent times. The complex cell envelope of the bacterium contains unusual structures of lipids which protects the bacterium from host enzymes and escape immune response. To overcome the drug resistance, targeting “drug targets” which have a critical role in growth and virulence factor is a novel approach for better tuberculosis treatment. The enzyme Phosphopantetheinyl transferase (PptT) is an attractive drug target as it is primarily involved in post translational modification of various types-I polyketide synthases and assembly of mycobactin, which is required for lipid virulence factors. Our in silico studies reported that the structural model of M.tuberculosis PptT characterizes the structure-function activity. The refinement of the model was carried out with molecular dynamics simulations and was analyzed with root mean square deviation (RMSD), and radius of gyration (Rg). This confirmed the structural behavior of PptT in dynamic system. Molecular docking with substrate coenzyme A (CoA) identified the binding pocket and key residues His93, Asp114 and Arg169 involved in PptT-CoA binding. In conclusion, our results show that the M.tuberculosis PptT model and critical CoA binding pocket initiate the inhibitor design of PptT towards tuberculosis treatment.  相似文献   

8.
The emergence of multidrug-resistant Mycobacterium tuberculosis (M.tb) has become one of the major hurdles in the treatment of tuberculosis (TB). Drug-resistant M.tb has evolved with various strategies to avoid killing by the anti-tubercular drugs. Thus, there is a rising need to develop effective anti-TB drugs to improve the treatment of these strains. Traditional drug design approach has earned little success due to time and the cost involved in the process of development of anti-infective drugs. Numerous reports have demonstrated that several mutations in the drug target sites cause emergence of drug-resistant M.tb strains. In this study, we performed computational mutational analysis of M.tb inhA, fabD, and ahpC genes, which are the primary targets for first-line isoniazid (INH) drug. In silico virtual drug screening was performed to identify the potent drugs from a ChEMBL compound library to improve the treatment of INH-resistant M.tb. Further, these compounds were analyzed for their binding efficiency against active drug binding cavity of M.tb wild-type and mutant InhA, FabD and AhpC proteins. The drug efficacy of predicted lead compounds was verified by molecular docking using M.tb wild-type and mutant InhA, FabD and AhpC protein template models. Different in silico and pharmacophore analysis predicted three potent lead compounds with better drug-like properties against both M.tb wild-type and mutant InhA, FabD, and AhpC proteins as compared to INH drug, and thus may be considered as effective drugs for the treatment of INH-resistant M.tb strains. We hypothesize that this work may accelerate drug discovery process for the treatment of drug-resistant TB.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
The amalgamation of the research efforts of biologists, chemists and geneticists led by scientists at the Department of Zoology, University of Delhi has resulted in the development of a novel rifamycin derivative; 24-desmethylrifampicin, which is highly effective against multi-drug resistant (MDR) strains of Mycobacterium tuberculosis. The production of rifamycin analogue was facilitated by genetic-synthetic strategies that have opened an interdisciplinary route for the development of more such rifamycin analogues aiming at a better therapeutic potential. The results of this painstaking effort of nearly 25 years of a team of students and scientists led by Professor Rup Lal have been recently published in the Journal of Biological Chemistry (www.jbc.org/content/289/30/21142.long). This strategy can now find applications for developing newer rifamycin analogues that can be harnessed to overcome the problem of MDR, extensively drug resistant (XDR) and totally drug resistant (TDR) M. tuberculosis.  相似文献   

10.
The review summarizes the data on the Mycobacterium tuberculosis mutations that lead to multidrug resistance (MDR) to various antibiotics. MDR strains arose over the past 30 years as a variety of antituberculosis drugs were introduced in medicine, and they largely discount the results of chemotherapy for tuberculosis. The most dangerous of them are strains with extensive drug resistance (XDR), which are resistant to four or five different drugs on average. The molecular mechanisms that make a strain resistant are considered. XDR and MDR strains result from successive and usually independent resistance mutations, which arise in various regions of the mycobacterial genome. In addition, the formation of resistant strains is affected by the phenomenon of tolerance and mycobacterial latency in infected tissues.  相似文献   

11.
The present study was undertaken to optimize the anti-tubercular activity of 2-acetamido-2-deoxy-β-d-glucopyranosyl N,N-dimethyldithiocarbamate (OCT313, Glc-NAc-DMDC), a lead compound previously reported by us. Structural modifications of OCT313 included the replacements of the DMDC group at C-1 by pyrrolidine dithiocarbamate (PDTC) and the acetyl group at C-2 by either propyl, butyl, benzyl or oleic acid groups. The antimycobacterial activities of these derivatives were evaluated against Mycobacterium tuberculosis (MTB). Glc-NAc-pyrrolidine dithiocarbamate (OCT313HK, Glc-NAc-PDTC) exhibited the most potent anti-tubercular activity with the minimal inhibitory concentration (MIC) of 6.25-12.5 μg/ml. The antibacterial activity of OCT313HK was highly specific to MTB and Mycobacterium bovis BCG, but not against Mycobacterium avium, Mycobacterium smegmatis, Staphylococcus aureus or Escherichia coli. Importantly, OCT313HK was also effective against MTB clinical isolates, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. Interestingly, OCT313HK was exerted the primary bactericidal activity, and it was also exhibited the bacteriolytic activity at high concentrations. We next investigated whether the mycobacterial monooxygenase EthA, a common activator of thiocarbamide-containing anti-tubercular drugs, also activated OCT313HK. Contrary to our expectations, the anti-tubercular activity of dithiocarbamate sugar derivatives and dithiocarbamates were not dependent on ethA expression, in contrast to thiocarbamide-containing drugs. Overall, this study presents OCT313HK as a novel and potent compound against MTB, particularly promising to overcome drug resistance.  相似文献   

12.
Genetically related Mycobacterium tuberculosis strains with alterations at codon 516 in the rpoB gene were observed amongst a substantial number of patients with drug resistant tuberculosis in the Eastern Cape Province (ECP) of South Africa. Mutations at codon 516 are usually associated with lower level rifampicin (RIF) resistance, while susceptibility to rifabutin (RFB) remains intact. This study was conducted to assess the rationale for using RFB as a substitution for RIF in the treatment of MDR and XDR tuberculosis outbreaks. Minimum inhibitory concentrations (MICs) of 34 drug resistant clinical isolates of M tuberculosis were determined by MGIT 960 and correlated with rpoB mutations. RFB MICs ranged from 0.125 to 0.25 µg/ml in the 34 test isolates thereby confirming phenotypic susceptibility as per critical concentration (CC) of 0.5 µg/ml. The corresponding RIF MICs ranged between 5 and 15 µg/ml, which is well above the CC of 1.0 µg/ml. Molecular-based drug susceptibility testing provides important pharmacogenetic insight by demonstrating a direct correlation between defined rpoB mutation and the level of RFB susceptibility. We suggest that isolates with marginally reduced susceptibility as compared to the epidemiological cut-off for wild-type strains (0.064 µg/ml), but lower than the current CC (≤0.5 µg/ml), are categorised as intermediate. Two breakpoints (0.064 µg/ml and 0.5 µg/ml) are recommended to distinguish between susceptible, intermediate and RFB resistant strains. This concept may assist clinicians and policy makers to make objective therapeutic decisions, especially in situations where therapeutic options are limited. The use of RFB in the ECP may improve therapeutic success and consequently minimise the risk of ongoing transmission of drug resistant M. tuberculosis strains.  相似文献   

13.
A series of 1,2,3-trisubstituted indolizines (2a–2f, 3a–3d, and 4a–4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b–2d, 3a–3d, and 4a–4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a–4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16–64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.  相似文献   

14.
The occurrence of drug resistance in Mycobacterium tuberculosis, the aetiological agent of tuberculosis (TB), is hampering the management and control of TB in the world. Here we present a computational analysis of recently sequenced drug-sensitive (DS), multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. Single-nucleotide variations (SNVs) were identified in a pair-wise manner using the anchor-based whole genome comparison (ABWGC) tool and its modified version. For this analysis, four fully sequenced genomes of different strains of M. tuberculosis were taken along with three KwaZulu-Natal (KZN) strains isolated from South Africa including one XDR and one MDR strain. KZN strains were compared with other fully sequenced strains and also among each other. The variations were analysed with respect to their biological influence as a result of either altered structure or synthesis. The results suggest that the DR phenotype may be due to changes in a number of genes. The database on KZN strains can be accessed through the website .  相似文献   

15.
Qi YC  Ma MJ  Li DJ  Chen MJ  Lu QB  Li XJ  Li JL  Liu W  Cao WC 《PloS one》2012,7(2):e32103

Background

The multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) has emerged as a global threat. Xinjiang is a multi-ethnic region and suffered second highest incidence of TB in China. However, epidemiological information on MDR and XDR TB is scarcely investigated.

Methodology/Principal Findings

A prospective study was conducted to analyze the prevalence of MDR and XDR TB and the differences of drug resistance TB between Chinese Han and other nationalities population at Chest Hospital of Xinjiang Uygur Autonomous Region, China. We performed in vitro drug susceptibility testing of Mycobacterium tuberculosis to first- and second-line anti-tuberculosis drugs for all 1893 culture confirmed positive TB cases that were diagnosed between June 2009 and June 2011. Totally 1117 (59.0%, 95% CI, 56.8%–61.2%) clinical isolates were resistant to ≥1 first-line drugs; the prevalence of MDR TB was 13.2% (95% CI, 11.7%–14.7%), of which, 77 (30.8%; 95% CI, 25.0%–36.6%) and 31 (12.8%; 95% CI, 8.6%–17.0%) isolates were pre-XDR and XDR TB respectively. Among the MDR/XDR TB, Chinese Han patients were significantly less likely to be younger with an odds ratio 0.42 for age 20–29 years and 0.52 for age 40–49 years; P trend = 0.004), and Chinese Han patients has a lower prevalence of XDR TB (9.6%) than all the other nationality (14.9%).

Conclusions/Significance

The burden of drug resistance TB cases is sizeable, which highlights an urgent need to reinforce the control, detection and treatment strategies for drug resistance TB. However, the difference of MDR and XDR TB between Chinese Han and other nationalities was not observed.  相似文献   

16.
During the treatment of tuberculosis infection, oxidative stress due to anti-tubercular drugs may result in tissue inflammation. It was suggested that treatment with antioxidant drugs could be beneficial as an adjunct to anti-tuberculosis drug therapy. Recently our group has shown that several C-glycosides are inhibitors of Mycobacterium tuberculosis β-carbonic anhydrases (CAs, EC 4.2.1.1). In an effort to develop novel chemotherapeutic agents against tuberculosis, the anti-tubercular and antioxidant activities of a series of C-glycosides containing the phenol or the methoxyaryl moiety were studied. Many compounds showed inhibition of growth of M. tuberculosis H37Rv strain and good antioxidant ability. A glycomimetic incorporating the 3-hydroxyphenyl moiety showed the best activity profile and therefore this functionality represents lead for the development of novel anti-tubercular agents with dual mechanisms of action.  相似文献   

17.
The Beijing genotype of Mycobacterium tuberculosis (MTB) is one of the most successful MTB lineages that has disseminated in the world. In China, the rate of multidrug-resistant (MDR) tuberculosis is significantly higher than the global average rate, and the Beijing genotype strains take the largest share of MDR strains. To study the genetic basis of the epidemiological findings that Beijing genotype has often been associated with tuberculosis outbreaks and drug resistance, we determined the genome sequences of four clinical isolates: two extensively drug resistant (XDR1219, XDR1221) and two multidrug resistant (WX1, WX3), using whole-genome sequencing. A large number of individual and shared SNPs of the four Beijing strains were identified. Our isolates harbored almost all classic drug resistance-associated mutations. The mutations responsible for drug resistance in the two XDR strains were consistent with the clinical quantitative drug resistance levels. COG analysis revealed that Beijing strains have significantly higher abundances of the mutations responsible for cell wall/membrane/envelope biogenesis (COG M), secondary metabolites biosynthesis, transport and catabolism (COG Q), lipid transport and metabolism (COG I) and defense mechanisms (COG V). The shared mutated genes of the four studied Beijing strains were significantly overrepresented in three DNA repair pathways. Our analyses promote the understanding of the genome polymorphism of the Beijing family strains and provide the molecular genetic basis for their wide dissemination capacity and drug resistance.  相似文献   

18.
Aims: The anti‐tubercular drugs are less effective because of the emergence of multi‐drug resistant (MDR) and extensively drug resistant (XDR) strains of M. tuberculosis, so plants being an alternative source of anti‐microbial compounds. The aim of this study was to investigate anti‐tuberculosis potential of the plants using Mycobacterium smegmatis as a rapid screening model for detection of anti‐mycobacterial activity and further to evaluate the active plants for anti‐tuberculosis activity against M. tuberculosis using radiometric BACTEC assay. Methods and Results: The 15 plants were screened for anti‐mycobacterial activity against M. smegmatis by the disk diffusion assay. The ethanolic extracts of Mallotus philippensis, Vitex negundo, Colebrookea oppositifolia, Rumex hastatus, Mimosa pudica, Kalanchoe integra and Flacourtia ramontchii were active against M. smegmatis in primary screening. The anti‐tuberculosis potential was identified in the leaves extracts of Mallotus philippensis by radiometric BACTEC assay. The ethanolic extract of M. philippensis showed anti‐tuberculosis activity against virulent and avirulent strains of M. tuberculosis H37Rv and M. tuberculosis H37Ra with minimum inhibitory concentration 0·25 and 0·125 mg ml?1, respectively. The inhibition in growth index values of M. tuberculosis was observed in the presence of ethyl acetate fraction at a minimum concentration of 0·05 mg ml?1. Conclusion: We found that BACTEC radiometric assay is a valuable method for detection of anti‐tuberculosis activity of the plant extracts. The results indicate that ethanolic extract and ethyl acetate fraction of M. philippensis exhibited significant anti‐mycobacterial activity against M. tuberculosis. Significance and Impact of the Study: These findings provide scientific evidence to support the traditional medicinal uses of M. philippensis and indicate a promising potential of this plant for the development of anti‐tuberculosis agent.  相似文献   

19.
InhA (Enoyl-ACP reductase) plays a crucial role in the biosynthetic pathway of cell wall synthesis in Mycobacterium tuberculosis (Mtb). Isoniazid (INH) is an important first-line drug, which inhibits InhA. The rapid increase in resistance to INH and currently marketed drugs as well as emergence of MDR-TB and XDR-TB has complicated the diagnosis and treatment of Mtb with ever increasing threat to human kind. Herein, we report novel N-methyl carbazole derivatives as potential anti-TB compounds acting directly via InhA inhibition. All the synthesized final compounds were screened against Mtb virulent cell line H37Rv and investigated the InhA enzyme inhibition. Interestingly, compound 9e displayed promising inhibition (91%) at 50 µM concentration and IC50 of 2.82 µM against InhA. To understand the ligand receptor interaction between compound 9e and InhA, molecular docking and molecular dynamics experiments were performed. The computational results were in agreement with the observed experimental data. Further, the cytotoxicity studies on mammalian cells revealed that all the compounds were safe.  相似文献   

20.
Tuberculosis (TB) is a serious and potentially fatal disease caused by Mycobacterium tuberculosis (M. tb). The occurrence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tb is a significant public health concern because most of the anti-TB drugs that have been in use for over 40 years are no longer effective for the treatment of these infections. Recently, new anti-TB lead compounds such as cyclomarin A, lassomycin, and ecumicin, which are cyclic peptides from actinomycetes, have shown potent anti-TB activity against MDR and XDR M. tb as well as drug-susceptible M. tb in vitro. The target molecule of these antibiotics is ClpC1, a protein that is essential for the growth of M. tb. In this review, we introduce the three anti-TB lead compounds as potential anti-TB therapeutic agents targeting ClpC1 and compare them with the existing anti-TB drugs approved by the US Food and Drug Administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号