首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle–restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle–restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position.  相似文献   

2.
Centromeres, the chromosomal loci that form the sites of attachment for spindle microtubules during mitosis, are identified by a unique chromatin structure generated by nucleosomes containing the histone H3 variant CENP-A. The apparent epigenetic mode of centromere inheritance across mitotic and meiotic divisions has generated much interest in how CENP-A assembly occurs and how structurally divergent centromeric nucleosomes can specify the centromere complex. Although a substantial number of proteins have been implicated in centromere assembly, factors that can bind CENP-A specifically and deliver nascent protein to the centromere were, thus far, lacking. Several recent reports on experiments in fission yeast and human cells have now shown significant progress on this problem. Here, we discuss these new developments and their implications for epigenetic centromere inheritance.  相似文献   

3.
Eukaryotic chromosomes segregate by attaching to microtubules of the mitotic spindle through a chromosomal microtubule binding site called the kinetochore. Kinetochores assemble on a specialized chromosomal locus termed the centromere, which is characterized by the replacement of histone H3 in centromeric nucleosomes with the essential histone H3 variant CENP-A (centromere protein A). Understanding how CENP-A chromatin is assembled and maintained is central to understanding chromosome segregation mechanisms. CENP-A nucleosome assembly requires the Mis18 complex and the CENP-A chaperone HJURP. These factors localize to centromeres in telophase/G1, when new CENP-A chromatin is assembled. The mechanisms that control their targeting are unknown. In this paper, we identify a mechanism for recruiting the Mis18 complex protein M18BP1 to centromeres. We show that depletion of CENP-C prevents M18BP1 targeting to metaphase centromeres and inhibits CENP-A chromatin assembly. We find that M18BP1 directly binds CENP-C through conserved domains in the CENP-C protein. Thus, CENP-C provides a link between existing CENP-A chromatin and the proteins required for new CENP-A nucleosome assembly.  相似文献   

4.
The centromere is an epigenetically designated chromatin domain that is essential for the accurate segregation of chromosomes during mitosis. The incorporation of centromere protein A (CENP-A) into chromatin is fundamental in defining the centromeric loci. Newly synthesized CENP-A is loaded at centromeres in early G1 phase by the CENP-A-specific histone chaperone Holliday junction recognition protein (HJURP) coupled with other chromatin assembly factors. However, it is unknown whether there are additional HJURP-interacting factor(s) involving in this process. Here we identify acidic nucleoplasmic DNA-binding protein 1 (And-1) as a new factor that is required for the assembly of CENP-A nucleosomes. And-1 interacts with both CENP-A and HJURP in a prenucleosomal complex, and the association of And-1 with CENP-A is increased during the cell cycle transition from mitosis to G1 phase. And-1 down-regulation significantly compromises chromosome congression and the deposition of HJURP-CENP-A complexes at centromeres. Consistently, overexpression of And-1 enhances the assembly of CENP-A at centromeres. We conclude that And-1 is an important factor that functions together with HJURP to facilitate the cell cycle-specific recruitment of CENP-A to centromeres.  相似文献   

5.
Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.  相似文献   

6.
Centromeres of higher eukaryotes are epigenetically marked by the centromere-specific CENP-A nucleosome. New CENP-A recruitment requires the CENP-A histone chaperone HJURP. In this paper, we show that a LacI (Lac repressor) fusion of HJURP drove the stable recruitment of CENP-A to a LacO (Lac operon) array at a noncentromeric locus. Ectopically targeted CENP-A chromatin at the LacO array was sufficient to direct the assembly of a functional centromere as indicated by the recruitment of the constitutive centromere-associated network proteins, the microtubule-binding protein NDC80, and the formation of stable kinetochore–microtubule attachments. An amino-terminal fragment of HJURP was able to assemble CENP-A nucleosomes in vitro, demonstrating that HJURP is a chromatin assembly factor. Furthermore, HJURP recruitment to endogenous centromeres required the Mis18 complex. Together, these data suggest that the role of the Mis18 complex in CENP-A deposition is to recruit HJURP and that the CENP-A nucleosome assembly activity of HJURP is responsible for centromeric chromatin assembly to maintain the epigenetic mark.  相似文献   

7.
Nucleosomes containing the specific histone H3 variant CENP-A mark the centromere locus on each chromatin and initiate kinetochore assembly. For the common type of regional centromeres, little is known in molecular detail of centromeric chromatin organization, its propagation through cell division, and how distinct organization patterns may facilitate kinetochore assembly. Here, we show that in the fission yeast S. pombe, a relatively small number of CENP-A/Cnp1 nucleosomes are found within the centromeric core and that their positioning relative to underlying DNA varies among genetically homogenous cells. Consistent with the flexible positioning of Cnp1 nucleosomes, a large portion of the endogenous centromere is dispensable for its essential activity in mediating chromosome segregation. We present biochemical evidence that Cnp1 occupancy directly correlates with silencing of the underlying reporter genes. Furthermore, using a newly developed pedigree analysis assay, we demonstrated the epigenetic inheritance of Cnp1 positioning and quantified the rate of occasional repositioning of Cnp1 nucleosomes throughout cell generations. Together, our results reveal the plasticity and the epigenetically inheritable nature of centromeric chromatin organization.  相似文献   

8.
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.  相似文献   

9.
Centromeres are defined by the presence of CENP-A nucleosomes in chromatin and are essential for accurate chromosome segregation. Centromeric chromatin epigenetically seeds new CENP-A nucleosome formation, thereby maintaining functional centromeres as cells divide. The features within centromeric chromatin that direct new CENP-A assembly remain unclear. Here, we developed a cell-free CENP-A assembly system that enabled the study of chromatin-bound CENP-A and soluble CENP-A separately. We show that two distinct domains of CENP-A within existing CENP-A nucleosomes are required for new CENP-A assembly and that CENP-A nucleosomes recruit the CENP-A assembly factors CENP-C and M18BP1 independently. Furthermore, we demonstrate that the mechanism of CENP-C recruitment to centromeres is dependent on the density of underlying CENP-A nucleosomes.  相似文献   

10.
CENP-A is a component of centromeric chromatin and defines active centromere regions by forming centromere-specific nucleosomes. We have isolated centromeric chromatin containing the CENP-A nucleosome, CENP-B, and CENP-C from HeLa cells using anti-CENP-A and/or anti-CENP-C antibodies and shown that the CENP-A/B/C complex is predominantly formed on alpha-satellite DNA that contains the CENP-B box (alphaI-type array). Mapping of hypersensitive sites for micrococcal nuclease (MNase) digestion indicated that CENP-A nucleosomes were phased on the alphaI-type array as a result of interactions between CENP-B and CENP-B boxes, implying a repetitive configuration for the CENP-B/CENP-A nucleosome complex. Molecular mass analysis by glycerol gradient sedimentation showed that MNase digestion released a CENP-A/B/C chromatin complex of three to four nucleosomes into the soluble fraction, suggesting that CENP-C is a component of the repetitive CENP-B/CENP-A nucleosome complex. Quantitative analysis by immunodepletion of CENP-A nucleosomes showed that most of the CENP-C and approximately half the CENP-B took part in formation of the CENP-A/B/C chromatin complex. A kinetic study of the solubilization of CENPs showed that MNase digestion first released the CENP-A/B/C chromatin complex into the soluble fraction, and later removed CENP-B and CENP-C from the complex. This result suggests that CENP-A nucleosomes form a complex with CENP-B and CENP-C through interaction with DNA. On the basis of these results, we propose that the CENP-A/B/C chromatin complex is selectively formed on the I-type alpha-satellite array and constitutes the prekinetochore in HeLa cells.  相似文献   

11.
Propagation of centromeric chromatin requires exit from mitosis   总被引:1,自引:0,他引:1       下载免费PDF全文
Centromeres direct chromosomal inheritance by nucleating assembly of the kinetochore, a large multiprotein complex required for microtubule attachment during mitosis. Centromere identity in humans is epigenetically determined, with no DNA sequence either necessary or sufficient. A prime candidate for the epigenetic mark is assembly into centromeric chromatin of centromere protein A (CENP-A), a histone H3 variant found only at functional centromeres. A new covalent fluorescent pulse-chase labeling approach using SNAP tagging has now been developed and is used to demonstrate that CENP-A bound to a mature centromere is quantitatively and equally partitioned to sister centromeres generated during S phase, thereby remaining stably associated through multiple cell divisions. Loading of nascent CENP-A on the megabase domains of replicated centromere DNA is shown to require passage through mitosis but not microtubule attachment. Very surprisingly, assembly and stabilization of new CENP-A-containing nucleosomes is restricted exclusively to the subsequent G1 phase, demonstrating direct coupling between progression through mitosis and assembly/maturation of the next generation of centromeres.  相似文献   

12.
Centromeric nucleosomes contain a histone H3 variant called centromere protein A (CENP-A) that is required for kinetochore assembly and chromosome segregation. Two new studies, Jansen et al. (see p. 795 of this issue) and Maddox et al. (see p. 757 of this issue), address when CENP-A is deposited at centromeres during the cell division cycle and identify an evolutionally conserved protein required for CENP-A deposition. Together, these studies advance our understanding of centromeric chromatin assembly and provide a framework for investigating the molecular mechanisms that underlie the centromere-specific loading of CENP-A.  相似文献   

13.
Centromeres contain specialized nucleosomes in which histone H3 is replaced by the histone variant centromere protein A (CENP-A). CENP-A nucleosomes are thought to act as an epigenetic mark that specifies centromere identity. We previously identified CENP-N as a CENP-A nucleosome-specific binding protein. Here, we show that CENP-C also binds directly and specifically to CENP-A nucleosomes. Nucleosome binding by CENP-C required the extreme C terminus of CENP-A and did not compete with CENP-N binding, which suggests that CENP-C and CENP-N recognize distinct structural elements of CENP-A nucleosomes. A mutation that disrupted CENP-C binding to CENP-A nucleosomes in vitro caused defects in CENP-C targeting to centromeres. Moreover, depletion of CENP-C with siRNA resulted in the mislocalization of all other nonhistone CENPs examined, including CENP-K, CENP-H, CENP-I, and CENP-T, and led to a partial reduction in centromeric CENP-A. We propose that CENP-C binds directly to CENP-A chromatin and, together with CENP-N, provides the foundation upon which other centromere and kinetochore proteins are assembled.  相似文献   

14.
15.
Centromeres direct faithful chromosome inheritance at cell division but are not defined by a conserved DNA sequence. Instead, a specialized form of chromatin containing the histone H3 variant, CENP-A, epigenetically specifies centromere location. We discuss current models where CENP-A serves as the marker for the centromere during the entire cell cycle in addition to generating the foundational chromatin for the kinetochore in mitosis. Recent elegant experiments have indicated that engineered arrays of CENP-A-containing nucleosomes are sufficient to serve as the site of kinetochore formation and for seeding centromeric chromatin that self-propagates through cell generations. Finally, recent structural and dynamic studies of CENP-A-containing histone complexes - before and after assembly into nucleosomes - provide models to explain underlying molecular mechanisms at the centromere.  相似文献   

16.
The human CENP-A centromeric nucleosome-associated complex   总被引:11,自引:0,他引:11  
  相似文献   

17.
The centromere is the fundamental unit for insuring chromosome inheritance. This complex region has a distinct type of chromatin in which histone H3 is replaced by a structurally different homologue identified in humans as CENP-A. In metazoans, specific DNA sequences are neither required nor sufficient for centromere identity. Rather, an epigenetic mark comprised of CENP-A containing chromatin is thought to be the major determinant of centromere identity. In this view, CENP-A deposition and chromatin assembly are fundamental processes for the maintenance of centromeric identity across mitotic and meiotic divisions. Several lines of evidence support CENP-A deposition in metazoans occurring at only one time in the cell cycle. Such cell cycle-dependent loading of CENP-A is found in divergent species from human to fission yeast, albeit with differences in the cell cycle point at which CENP-A is assembled. Cell cycle dependent CENP-A deposition requires multiple assembly factors for its deposition and maintenance. This review discusses the regulation of new CENP-A deposition and its relevance to centromere identity and inheritance.  相似文献   

18.
Epigenetic mechanisms regulate genome activation in diverse events, including normal development and cancerous transformation. Centromeres are epigenetically designated chromosomal regions that maintain genomic stability by directing chromosome segregation during cell division. The histone H3 variant CENP-A resides specifically at centromeres, is fundamental to centromere function and is thought to act as the epigenetic mark defining centromere loci. Mechanisms directing assembly of CENP-A nucleosomes have recently emerged, but how CENP-A is maintained after assembly is unknown. Here, we show that a small GTPase switch functions to maintain newly assembled CENP-A nucleosomes. Using functional proteomics, we found that MgcRacGAP (a Rho family GTPase activating protein) interacts with the CENP-A licensing factor HsKNL2. High-resolution live-cell imaging assays, designed in this study, demonstrated that MgcRacGAP, the Rho family guanine nucleotide exchange factor (GEF) Ect2, and the small GTPases Cdc42 and Rac, are required for stability of newly incorporated CENP-A at centromeres. Thus, a small GTPase switch ensures epigenetic centromere maintenance after loading of new CENP-A.  相似文献   

19.
20.
The kinetochore is a crucial structure for faithful chromosome segregation during mitosis and is formed in the centromeric region of each chromosome. The 16-subunit protein complex known as the constitutive centromere-associated network (CCAN) forms the foundation for kinetochore assembly on the centromeric chromatin. Although the CCAN can be divided into several subcomplexes, it remains unclear how CCAN proteins are organized to form the functional kinetochore. In particular, this organization may vary as the cell cycle progresses. To address this, we analyzed the relationship of centromeric protein (CENP)-C with the CENP-H complex during progression of the cell cycle. We find that the middle portion of chicken CENP-C (CENP-C166–324) is sufficient for centromere localization during interphase, potentially through association with the CENP-L-N complex. The C-terminus of CENP-C (CENP-C601–864) is essential for centromere localization during mitosis, through binding to CENP-A nucleosomes, independent of the CENP-H complex. On the basis of these results, we propose that CCAN organization changes dynamically during progression of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号