首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chang YC  Lo YH  Lee MH  Leng CH  Hu SM  Chang CS  Wang TF 《Biochemistry》2005,44(16):6052-6058
Saccharomyces cerevisiae Dmc1, a meiosis-specific homologue of RecA, catalyzes homologous pairing and strand exchange during meiotic DNA recombination. The purified budding yeast Dmc1 (ScDmc1) protein exhibits much weaker recombinase activity in vitro as compared to that of the Escherichia coli RecA protein. Using atomic force microscopy (AFM) with carbon nanotube tips, we found ScDmc1 forms rings with an external diameter of 18 nm and a central cavity of 4 nm. In the presence of single-stranded DNA (ssDNA), the majority of the ScDmc1 protein (90%) bound DNA as protein rings; only a small faction (10%) was able to form filamentous structure. In contrast, nearly all RecA proteins form fine helical nucleoprotein filaments with ssDNA under identical conditions. RecA-mediated recombinase activity is initiated through the nucleation of RecA onto ssDNA to form helical nucleoprotein filaments. Our results support the notion that ScDmc1 becomes catalytically active only when it forms a helical nucleoprotein filament with ssDNA.  相似文献   

2.
Genetic studies in budding and fission yeasts have provided evidence that Rdh54, a Swi2/Snf2-like factor, synergizes with the Dmc1 recombinase to mediate inter-homologue recombination during meiosis. Rdh54 associates with Dmc1 in the yeast two-hybrid assay, but whether the Rdh54–Dmc1 interaction is direct and the manner in which these two recombination factors may functionally co-operate to accomplish their biological task have not yet been defined. Here, using purified Schizosaccharomyces pombe proteins, we demonstrate complex formation between Rdh54 and Dmc1 and enhancement of the recombinase activity of Dmc1 by Rdh54. Consistent with published cytological and chromatin immunoprecipitation data that implicate Rdh54 in preventing the non-specific association of Dmc1 with chromatin, we show here that Rdh54 mediates the efficient removal of Dmc1 from dsDNA. These functional attributes of Rdh54 are reliant on its ATPase function. The results presented herein provide valuable information concerning the Rdh54–Dmc1 protein pair that is germane for understanding their role in meiotic recombination. The biochemical systems established in this study should be useful for the continuing dissection of the action mechanism of Rdh54 and Dmc1.  相似文献   

3.
4.
An efficient purification system for purifying recombinant Bacillus subtilis 168 catalase (KatA) expressed in Escherichia coli was developed. The basic region containing 252–273 amino acids derived from E. coli ribosomal protein L2 was used as an affinity tag while the small ubiquitin-like modifier (SUMO) was introduced as one specific protease cleavage site between the target protein and the purification tags. L2 (252–273)–SUMO fusion protein purification method can be effectively applied to purify the recombinant catalase using cation exchange resin. This purification procedure was used to purify the KatA and achieved a purification fold of 30.5, a specific activity of 48,227.2 U/mg and an activity recovery of 74.5%. The enzyme showed a Soret peak at 407 nm. The enzyme kept its activity between pH 5 and 10 and between 30 °C and 60 °C, with the highest activity at pH 8.0 and 37 °C. The enzyme displayed an apparent Km of 39.08 mM for hydrogen peroxide. These results agree well with the previous reports about B. subtilis catalase. L2 (252–273)–SUMO fusion protein purification technique provides a novel and effective fusion expression system for the production of recombinant proteins.  相似文献   

5.
《Process Biochemistry》2014,49(2):335-346
Selective purification still poses a challenge in the downstream processing of biomolecules such as proteins and especially enzymes. In this study a polyethylene glycol 3000 (PEG 3000)–phosphate aqueous two-phase system at 25 °C and pH 7 was successfully used for laccase purification and separation. Initially, the effect of phase forming components on enzyme activities in homogenous systems was studied. In the course of the extraction experiments tie lines, enzyme source, initial enzyme activities, phase ratio and sodium chloride concentrations were varied and their influence on the activity partitioning was determined. Partitioning results were validated using clear-native-PAGE and isoelectric focusing. Based on these results, the separation of laccases from Trametes versicolor and Pleurotus sapidus was investigated using the principle of superposition. Sodium chloride was used to adjust laccase partitioning in the applied aqueous two-phase system (ATPS). Finally, two modes of operation are proposed depending on the aim of the purification task. One mode with 0.133 g g−1 of PEG3000, 0.063 g g−1 of phosphate and without sodium chloride separates P. sapidus laccases from T. versicolor laccases with clearance factors of 5.23 and 6.45, respectively. The other mode of operation with 0.124 g g−1 of PEG3000, 0.063 g g−1 of phosphate and 0.013 g g−1 of sodium chloride enables a partitioning of both laccases into the bottom phase of the ATPS resulting in a purification factor of 2.74 and 96% activity recovery.  相似文献   

6.
The thermo-sensitive N-alkyl substituted polyacrylamide polymer was synthesized by radical polymerization and its lower critical solution temperature (LCST) was controlled to be 28 °C. The thermo-sensitive recovery of polymer was over 95% in the presence of 0.05 M NaClO4. Cibacron Blue F3GA was covalently immobilized onto the polymer via the nucleophilic reaction between the active chlorine atom of its triazine ring and the hydroxyl group of the polymer. The ligands density was 30 μmol g−1 polymer. The adsorption capacity of lysozyme on the polymer was 3.4 mg g−1polymer in affinity precipitation process. And over 90% of adsorbed lysozyme was eluted by 0.5 M KSCN at pH 8.0. When the affinity polymer was applied in the purification of lysozyme from egg white, the purification factor was 28 and lysozyme yield was 80% or so.  相似文献   

7.
The purification and characterization of an extracellular α-l-arabinofuranosidase (α-l-AFase) from Chaetomium sp. was investigated in this report. The α-l-AFase was purified to homogeneity with a purification fold of 1030. The purified α-l-AFase had a specific activity of 20.6 U mg?1. The molecular mass of the enzyme was estimated to be 52.9 kDa and 51.6 kDa by SDS–PAGE and gel filtration, respectively. The optimal pH and temperature of the enzyme were pH 5.0 and 70 °C, respectively. The enzyme was stable over a broad pH range of 4.0–10.0 and also exhibited excellent thermostability, i.e., the residual activities reached 75% after treatment at 60 °C for 1 h. The enzyme showed strict substrate specificity for the α-l-arabinofuranosyl linkage. The Km and Vmax values for p-nitrophenyl (pNP)-α-l-arabinofuranoside were calculated to be 1.43 mM and 68.3 μmol min?1 mg?1 protein, respectively. Furthermore, the gene encoding α-l-AFase was cloned and sequenced and found to contain a catalytic domain belonging to the glycoside hydrolase (GH) family 43 α-l-AFase. The deduced amino acid sequence of the gene showed the highest identity (67%) to the putative α-l-AFase from Neurospora crassa. This is the first report on the purification, characterization and gene sequence of an α-l-AFase from Chaetomium sp.  相似文献   

8.
《Process Biochemistry》2007,42(8):1229-1236
A protease, producing bacterial culture (isolate ‘C’) was obtained from slaughterhouse waste samples, Hyderabad, India. It was related to Serratia rubidaea on the basis of 16S r RNA gene sequencing and biochemical properties. Cultural characters of S. rubidaea identified it as a psychrophile secreting protease at 10–30 °C. Single step purification of culture supernatant on sephacryl S-100 column revealed two proteases CP-1 and CP-2. The molecular masses of the enzymes determined by SDS-PAGE and zymography were approximately 97 and 45 kDa, respectively. N-terminal sequencing of CP-1 revealed a novel surface protein of S. rubidaea and CP-2 protease has shown 100% homology with protease of Serratia sp. A fold purification of 1.5 with 54% recovery was achieved in CP1 and purification of CP-2 resulted in 88% yield with a fold purification of 2. The optimum pH values of CP-1 and CP-2 were shown to be 10 and 8, respectively. The maximum activities for the enzymes were at 40 °C and 30 °C. Both the proteases are inhibited by EDTA indicating that they are metallo proteases. The activity of CP-1 was enhanced with Cu2+ that of CP-2 was enhanced with Zn2+ and Ca2+. These proteases have stability in presence of detergents, surfactants and solvents. These properties make these proteases an ideal choice for application in detergent formulations, food, leather industries, vaccine and enzyme peptide synthesis.  相似文献   

9.
An extracellular lipase was isolated from Pseudomona cepacia by expanded bed adsorption on an Amberlite 410 ion-exchange resin. Enzyme characterization and hydrodynamic study of a chromatography column were done. Enzyme purification was done at three condition of expanded bed height (H): at one and half (6 cm), at two (8 cm) and at three (12 cm) times the fixed bed height (H0 = 4 cm). The results showed that the experimental data was fitted to the Richardson and Zaki equation, and the comparison between the experimental and calculated terminal velocities showed low relative error. In enzyme purification for better condition, a purification factor of about 80 times was found at 6 cm of expanded bed height, or 1.5 times of expansion degree. Purified lipase had an optimal pH and a temperature of 8 and 37 °C, respectively.  相似文献   

10.
This paper analyses the purification efficiency and mass removal of organic material, suspended solids, nitrogen and phosphorus in a hybrid constructed wetland (CW) system treating wastewater from a basic school in Paistu, Estonia. The CW consists of two subsurface flow filter beds using lightweight aggregates (LWA): a two-chamber vertical subsurface flow (VSSF) filter bed followed by a horizontal subsurface flow (HSSF) filter bed, with a total area of 432 m2. This CW was constructed in summer 2002 by the Centre for Ecological Engineering in Tartu (CEET). Eighteen series of water samples (from 30.10.2003 to 15.10.2005) were undertaken. The analyses show the outstanding purification effect of the system: for BOD7 the average purification efficiency is 91%; for total suspended solids (TSS)—78%, for total P—89%, for total N—63%, and for NH4N—77%. The average outlet values for the above-listed parameters were 5.5, 7.0, 0.4, 19.2 and 9.1 mg L−1, respectively. According to our results, the purification parameters meet the standards set by the Water Act of Estonia for wastewater treatment plants of 2000–9999 PE: 15, 25, and 1.5 mg L−1 for BOD7, TSS and total P, respectively. The results show that hybrid CW systems consisting of subsurface flow filter beds can work efficiently in conditions of changing hydraulic loading and relatively cold climate. We did not find significant differences between the removal efficiency, mass removal, and values of the first-order rate-constant k for most water quality indicators during the warm (May–October) and cold (November–April) periods. Locally produced LWA as a filter material in CWs has shown good hydraulic conductivity and phosphorus sorption capacity (k = 17.1 ± 12.4 m yr−1). The Paistu CW, with its proper design and outstanding purification results, can be considered one of the best systems in Estonia.  相似文献   

11.
In this study, thermo-sensitive N-alkyl substituted polyacrylamide polymer PNNB was synthesized by using N-hydroxymethyl acrylamide(NHAM), N-isopropyl acrylamide (NIPA) and butyl acrylate (BA) as monomers, and its low critical solution temperature (LCST) was controlled to be 28 °C. The recovery of the thermo-sensitive polymer was over 98%. Butanol as a hydrophobic ligand was covalently attached onto polymer PNNB and butyl ligand density was 80 μmol g?1 polymer. The affinity polymer was used for purification of lipase from crude material. Optimized condition was pH 7.0, 35 °C adsorption temperature, 120 min adsorption time and 0.5 mg ml?1 initial concentration of lipase. The adsorption isotherm accords with a typical Langmuir isotherm. The maximum adsorption capacity (Qm) of the affinity polymer for lipase was 24.8 mg g?1polymer. The affinity copolymer could be recycled by temperature-inducing precipitation and there was only about 6% loss of adsorption capacity after five recyclings. Specific activity of lipase was improved from 14 IU mg?1 to 506 IU mg?1 protein, and its recovery achieved 82%. The affinity polymer is suitable for the purification of target proteins from the crude material with large volume and dilute solution.  相似文献   

12.
The glutathione reductase (GR) and thioredoxin reductase (TrxR) are important enzymes of the redox system that aid parasites to maintain an adequate intracellular redox environment. In the present study, the enzyme activity of GR and TrxR was investigated in Setaria cervi (S. cervi). Significant activity of both enzymes was detected in the somatic extract of adult and microfilariae stages of S. cervi. Both GR and TrxR were separated by partial purification using ammonium sulfate fractionation and DEAE ion exchange chromatography suggesting the presence of both glutathione and thioredoxin systems in S. cervi. The enzyme glutathione reductase (ScGR) was purified to homogeneity using affinity and ion exchange chromatography that resulted in 90 fold purification with a yield of 11.54%. The specific activity of the ScGR was 643 U/mg that migrated as a single band on SDS-PAGE. The subunit molecular mass was determined to be ~ 50 kDa while the optimum pH and temperature were found to be 7.0 and 35 °C respectively. The activation energy (Ea) was calculated from the slope of Arrhenius plot as 16.29 ± 1.40 kcal/mol. The Km and Vmax were determined to be 0.27 ± 0.045 mM; 30.30 ± 1.30 U/ml with NADPH and 0.59 ± 0.060 mM; 4.16 ± 0.095 U/ml with GSSG respectively. DHBA, a specific inhibitor for GR has completely inhibited the enzyme activity at 1 μM concentration. The inhibition of ScGR activity with NAI (IC50 0.71 mM), NEM (IC50 0.50 mM) and DEPC (IC50 0.27 mM) suggested the presence of tyrosine, cysteine and histidine residues at its active site. Further studies on characterization and understanding of these antioxidant enzymes may lead to designing of an effective drug against lymphatic filariasis.  相似文献   

13.
《Process Biochemistry》2010,45(6):835-840
Horseradish peroxidase is used in many biotechnological fields including diagnostics, biocatalysts and biosensors. Horseradish peroxidase isozyme C (HRPC) was extracellularly expressed in Spodoptera frugiperda Sf9 cell culture and in intact larvae. At day 6 post-infection, the concentration of active HRPC in suspension cultures was 3.0 ± 0.1 μg per 1 × 106 cells or 3.0 ± 0.1 mg l−1 with a multiplicity of infection of 1 in the presence of 7.2 μM hemin. Similar yields were obtained in monolayer cultures. In larvae, the HRPC expression level was 137 ± 17 mg HRPC kg−1 larvae at day 6 post-infection with a single larvae thus producing approximately 41 μg HRPC. The whole larval extract was separated by ion exchange chromatography and HRPC was purified in a single step with a yield of 75% and a purification factor of 117. The molecular weight of recombinant HRPC was 44,016 Da, and its glycosylation pattern agreed with that expected for invertebrates. The Km and Vmax were 12.1 ± 1.7 mM and 2673 ± 113 U mg−1, respectively, similar to those of HRP purified from Armoracia rusticana roots. The method described in this study, based on overexpression of HRPC in S. frugiperda larvae, is a simple and inexpensive way to obtain high levels of active enzyme for research and other biotechnological applications.  相似文献   

14.
Tuberonic acid (TA) and its glucoside (TAG) have been isolated from potato (Solanum tuberosum L.) leaflets and shown to exhibit tuber-inducing properties. These compounds were reported to be biosynthesized from jasmonic acid (JA) by hydroxylation and subsequent glycosylation, and to be contained in various plant species. Here we describe the in vivo hydrolytic activity of TAG in rice. In this study, the TA resulting from TAG was not converted into JA. Tuberonic acid glucoside (TAG)-hydrolyzing β-glucosidase, designated OsTAGG1, was purified from rice by six purification steps with an ~4300-fold purification. The purified enzyme migrated as a single band on native PAGE, but as two bands with molecular masses of 42 and 26 kDa on SDS–PAGE. Results from N-terminal sequencing and peptide mass fingerprinting of both polypeptides suggested that both bands were derived from a single polypeptide, which is a member of the glycosyl hydrolase family 1. In the native enzyme, the Km and Vmax values of TAG were 31.7 μM and 0.25 μkatal/mg protein, OsTAGG1 preferentially hydrolyzed TAG and methyl TAG. Here we report that OsTAGG1 is a specific β-glucosidase hydrolyzing TAG, which releases the physiologically active TA.  相似文献   

15.
Eight fungal species were cultivated on the Czapek liquid medium and a good starting extracellular and intracellular exo-inulinase were selected. Extracellular inulinase from Ulocladium atrum was prepared in the presence of 1% inulin source and 0.2% sodium nitrate as the best carbon and nitrogen sources. Incubation for the U. atrum was increased till it reached its maximum (36 U/ml) at the sixth day of incubation at 30 °C which was the best temperature for the production of exo-inulinase. Effect of all metal ions inhibited inulase production by U. atrum. Exo-inulinase was purified by using ammonium sulfate precipitation, ion exchange chromatography on DEAE-cellulose. Three active inulinase forms INI, INII and INIII were resolved, each for DEAE cellulose. The specific activity of INI was 1915 U/mg protein which represented 2.65-fold purification over the crude extract with 42.8% recovery pooling of INI placed on CM cellulose chromatography and INI was resolved into INIa, INIb and INIc. The specific activity of INIa was 2479.2 U/mg protein which represented 3.43-fold purification over the crude extract with 24.2% recovery.  相似文献   

16.
Anoxybacillus beppuensis TSSC-1 (GenBank Number, EU710556), a thermophilic bacterium isolated from a hot spring reservoir, was found to optimally secrete a monomeric α-amylase at 55 °C and pH 7. The enzyme was purified to homogeneity by a single-step purification on phenyl sepharose 6FF, achieving a 58% yield, 10,000 U/mg specific activity and 19.5 fold purification. The molecular weight, Km and Vmax were 43 kD, 0.5 mg ml?1 and 3571.42 μmol ml?1 m?1, respectively. The enzymatic catalysis of soluble starch was optimum at 80 °C and pH 7. The thermodynamic parameters, Kd, t1/2, ΔH*, ΔS*, E and ΔG*, were consistent. The very compact structure of the enzyme and the transitional enzyme–substrate complex resisted denaturation at extreme temperatures and alkaline pH. The Kd and t1/2 measurements were consistent with the high thermostability and pH tolerance observed. The structural stability of the enzyme was also reflected by the values of ΔH*, ΔS*, E and ΔG*. While the enzyme did not exhibit metal ion dependency, it was resistant to chemical denaturation. The broad thermo- and pH-tolerance of this enzyme suggests potential commercial opportunities.  相似文献   

17.
Two acetyl saponins, 2″-O-acetylplatycodin D and 3″-O-acetylplatycodin D from Platycodon Radix were selected for their structure stability study. Different solvents, stationary phases and temperatures were employed to study the structural inter-conversion of acetyl group in two acetyl saponins. The results showed that the reaction of acetyl transfer was faster in water than other solvents, and comparing to the normal/reverse silica gels, the reaction of acetyl migration almost did not happen during the process of purification by macroporous resin. The activation energy and enthalpy of 2″-APD converted into 3″-APD reaction were 63.01 kJ mol−1, and 7.48 kJ mol−1, respectively. Low polar solvent, macroporous resin and low temperature may be more suitable for the separation and purification of acetyl saponins.  相似文献   

18.
LETEG is a method developed and used for the separation and purification of proteins employing a single-step ligand (aptamers) evolution in which aptamers are eluted with an increasing temperature gradient. Using recombinant human growth hormone (rhGH) as the test purification target, and after avoiding cross reactions of aptamers with Bacillus subtilis extracellular proteins by negative SELEX, the effects of time and pH on aptamer binding to rhGH were investigated. The highest binding efficiency of aptamers on rhGH-immobilized microparticles was obtained at pH 7.0. The aptamers that interacted with rhGH were eluted by a multi-stage step-up temperature gradient in ΔT = 10 °C increments within the range T = 55–95 °C; and the strongest affinity binding was disrupted at T = 85 °C where CApt = 0.16 μM was eluted. The equilibrium binding data obtained was described by a Langmuir-type isotherm; where the affinity constant was KD = 218 nM rhGH. RhGH was separated from the fermentation broth with 99.8% purity, indicating that the method developed is properly applicable even for an anionic protein.  相似文献   

19.
《Process Biochemistry》2014,49(12):2174-2180
Different filamentous fungi isolated from molasses and jams (kiwi and fig) were screened for fructooligosaccharides (FOS) producing activity. Two strains, identified as Penicilium sizovae (CK1) and Cladosporium cladosporioides (CF215), were selected on the basis of the FOS yield and kestose/nystose ratio. In both strains the activity was mostly mycelium-bound. Starting from 600 g/L of sucrose, maximum FOS yield was 184 and 339 g/L for P. sizovae and C. cladosporioides, respectively. Interestingly, the highest FOS concentration with C. cladosporioides was reached at 93% sucrose conversion, which indicated a notable transglycosylation to hydrolysis ratio. The main FOS in the reaction mixtures were identified by HPAEC–PAD chromatography. C. cladosporioides synthesized mainly 1-kestose (158 g/L), nystose (97 g/L), 1F-fructosylnystose (19 g/L), 6-kestose (12 g/L), neokestose (10 g/L) and a disaccharide (34 g/L) that after its purification and NMR analysis was identified as blastose [Fru-β(2  6)-Glc]. P. sizovae was very selective for the formation of 1F-FOS (in particular 1-kestose) with minor contribution of neoFOS and negligible of levan-type FOS.  相似文献   

20.
Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS–PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 Å. The crystal belonged to space group C2221, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 Å, and α = β = γ = 90°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号