首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biocatalytic Synthesis of Vanillin   总被引:3,自引:1,他引:2       下载免费PDF全文
The conversions of vanillic acid and O-benzylvanillic acid to vanillin were examined by using whole cells and enzyme preparations of Nocardia sp. strain NRRL 5646. With growing cultures, vanillic acid was decarboxylated (69% yield) to guaiacol and reduced (11% yield) to vanillyl alcohol. In resting Nocardia cells in buffer, 4-O-benzylvanillic acid was converted to the corresponding alcohol product without decarboxylation. Purified Nocardia carboxylic acid reductase, an ATP and NADPH-dependent enzyme, quantitatively reduced vanillic acid to vanillin. Structures of metabolites were established by 1H nuclear magnetic resonance and mass spectral analyses.  相似文献   

2.
Oxidation of isoeugenol by Nocardia iowensis   总被引:1,自引:0,他引:1  
Isoeugenol is a starting material for both the synthetic and biotechnological production of vanillin and vanillic acid. Nocardia iowensis DSM 45197 (formerly Nocardia species NRRL 5646) resting cells catalyze the conversion of isoeugenol to vanillic acid, vanillin, vanillyl alcohol and guaiacol. The present study used a variety of chemical, microbial and enzymatic approaches to probe the pathways used by N. iowensis in the oxidation of isoeugenol to these products. Of three possible pathways considered, initial side-chain olefin epoxidation, epoxide hydrolysis to a vicinal diol, and diol cleavage to vanillin and subsequently further oxidation to vanillic acid appears as the most likely route. Isoeugenol was not oxidized to ferulic acid, a well-known microbial transformation precursor for vanillin and vanillic acid. 18O-Labeled oxygen (one atom) and water (two oxygen atoms) were incorporated into vanillic acid during the whole-cell biotransformation reaction with isoeugenol indicating the likely involvement of oxygenase and hydrolase systems in the bioconversion reaction. Vanillin was converted to singly labeled vanillic acid in the presence of H218O suggesting the presence of an aldehyde oxidase. Cell extracts achieved the conversion of isoeugenol to vanillic acid and vanillin without cofactors. Partial fractionation of two enzyme activities supported the presence of isoeugenol monooxygenase and vanillin oxidase activities in N. iowensis.  相似文献   

3.
Aldehyde oxidoreductase (carboxylic acid reductase) catalyzes the Mg(2+), ATP and NADPH dependent reduction of carboxylic acids to their corresponding aldehydes. The identification of the gene from Nocardia sp. NRRL 5646 and its expression in E. coli BL21-CodonPlus(?)(DE3)-RP/pHAT305 provided an avenue to develop a biocatalyst for reduction of carboxylic acids. In addition to aromatic acids, the recombinant carboxylic acid reductase also accepts several aliphatic mono, di and tri carboxylic acids as substrates. A recently identified Nocardia sp., phosphopantetheinyl transferase gene (npt) enhanced the activity of carboxylic acid reductase. Coexpression of car and npt in E. coli BL21-CodonPlus(?)(DE3)-RP/pPV2.83 resulted in a purified recombinant carboxylic acid reductase with improved specific activity of 2.2U/mg protein. The utility of the recombinant carboxylic acid reductase as a biocatalyst has been demonstrated using vanillic acid as substrate. E. coli BL21-CodonPlus(?)(DE3)-RP/pHAT305 expressing Car reduced 50% of vanillic acid to vanillin in 10h. E. coli BL21-CodonPlus(?)(DE3)-RP/pPV2.83 resting cells expressing Car and Npt reduced 90% of vanillic acid to vanillin in 6h. Enhanced, in vivo cofactor NADPH regeneration by glucose dehydrogenase (gdh) was accomplished using E. coli BL21-CodonPlus(?)(DE3)-RP/pPV2.85, that carried car, npt, and gdh. Resting cell reactions using E. coli BL21-CodonPlus(?)(DE3)-RP/pPV2.85 with in situ product removal by XAD-2 resin efficiently reduced 5g/L of vanillic and benzoic acids within 2h.  相似文献   

4.
Isoeugenol is a starting material for both the synthetic and biotechnological production of vanillin and vanillic acid. Nocardia iowensis DSM 45197 (formerly Nocardia species NRRL 5646) resting cells catalyze the conversion of isoeugenol to vanillic acid, vanillin, vanillyl alcohol and guaiacol. The present study used a variety of chemical, microbial and enzymatic approaches to probe the pathways used by N. iowensis in the oxidation of isoeugenol to these products. Of three possible pathways considered, initial side-chain olefin epoxidation, epoxide hydrolysis to a vicinal diol, and diol cleavage to vanillin and subsequently further oxidation to vanillic acid appears as the most likely route. Isoeugenol was not oxidized to ferulic acid, a well-known microbial transformation precursor for vanillin and vanillic acid. 18O-Labeled oxygen (one atom) and water (two oxygen atoms) were incorporated into vanillic acid during the whole-cell biotransformation reaction with isoeugenol indicating the likely involvement of oxygenase and hydrolase systems in the bioconversion reaction. Vanillin was converted to singly labeled vanillic acid in the presence of H218O suggesting the presence of an aldehyde oxidase. Cell extracts achieved the conversion of isoeugenol to vanillic acid and vanillin without cofactors. Partial fractionation of two enzyme activities supported the presence of isoeugenol monooxygenase and vanillin oxidase activities in N. iowensis.  相似文献   

5.
A two-step bioconversion process of ferulic acid to vanillin was elaborated combining two filamentous fungi, Aspergillus niger and Pycnoporus cinnabarinus. In the first step, A. niger transformed ferulic acid to vanillic acid and in the second step vanillic acid was reduced to vanillin by P. cinnabarinus. Ferulic acid metabolism by A. niger occurred essentially via the propenoic chain degradation to lead to vanillic acid, which was subsequently decarboxylated to methoxyhydroquinone. In 3-day-old cultures of P. cinnabarinus supplied with vanillic-acid-enriched culture medium from A. niger as precursor source, vanillin was successfully produced. In order to improve the yields of the process, sequential additions of precursors were performed. Vanillic acid production by A. niger from ferulic acid reached 920 mg l−1 with a molar yield of 88% and vanillin production by P. cinnabarinus from vanillic acid attained 237 mg l −1 with a molar yield of 22%. However, the vanillic acid oxidative system producing methoxyhydroquinone was predominant in P. cinnabarinus cultures, which explained the relatively low level in vanillin.  相似文献   

6.
In this study a novel strain was isolated with the capability to grow on eugenol as a source of carbon and energy. This strain was identified as Pseudomonas resinovorans (GenBank accession no. HQ198585) based on phenotypic characterization and phylogenetic analysis of 16S rDNA gene. The intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid were detected in the culture supernatant during eugenol biotransformation with this strain. The products were confirmed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and spectral data achieved from UV-vis, FTIR and mass spectroscopy. Using eugenol as substrate and resting cells of P. resinovorans SPR1, which were harvested at the end of the exponential growth phase, without further optimization 0.24 g/L vanillin (molar yield of 10%) and 1.1g/L vanillic acid (molar yield of 44%) were produced after 30 h and 60 h biotransformation, respectively. The current work gives the first evidence for the eugenol biotransformation by P. resinovorans.  相似文献   

7.
Aldehyde oxidoreductase (carboxylic acid reductase (Car)) catalyzes the magnesium-, ATP-, and NADPH-dependent reduction of carboxylic acids to their corresponding aldehydes. Heterologous expression of the car gene in Escherichia coli afforded purified recombinant enzyme with a specific activity nearly 50-fold lower than that of purified native Nocardia sp. enzyme. The 5-fold increase in specific activity obtained by incubating purified recombinant Car with CoA and Nocardia cell-free extracts indicated that post-translational phosphopantetheinylation of Car is required for maximum enzyme activity. Nocardia phosphopantetheine transferase (PPTase) expressed in E. coli was isolated and characterized. When incubated with [(3)H]acetyl-CoA and Nocardia PPTase, the labeled acetylphosphopantetheine moiety was incorporated into recombinant Car. Coexpression of Nocardia Car and PPTase in E. coli gave a reductase with nearly 20-fold higher specific activity. Site-directed mutagenesis in which Ser(689) was replaced with Ala resulted in an inactive Car mutant. The results show that Car expressed in Escherichia coli is an apoenzyme that is converted to a holoenzyme by post-translational modification via phosphopantetheinylation. Doubly recombinant resting E. coli cells efficiently reduce vanillic acid to vanillin.  相似文献   

8.
Protoplasts of the basidiomycete, Fomitopsis palustris (formerly Tyromyces palustris), were utilized to study a function of the fungal plasma membrane. Fungal protoplasts exhibited metabolic activities as seen with intact mycelial cells. Furthermore, the uptake of certain compounds into the protoplast cells was quantitatively observed by using non-radioactive compounds. Vanillin was converted to vanillyl alcohol and vanillic acid as major products and to protocatechuic acid and 1,2,4-trihydroxybenzene as trace products by protoplasts prepared from F. palustris. Extracellular culture medium showed no activity responsible for the redox reactions of vanillin. Only vanillic acid was detected in the intracellular fraction of protoplasts. However, the addition of disulfiram, an aldehyde dehydrogenase inhibitor, caused an intracellular accumulation of vanillin, strongly suggesting that vanillin is taken up by the cell, followed by oxidation to vanillic acid. The addition of carbonylcyanide m-chlorophenylhydrazone, which dissipates the pH gradient across the plasma membrane, inhibited the uptake of either vanillin or vanillic acid into the cell. Thus, the fungus seems to possess transporter devices for both vanillin and vanillic acid for their uptake. Since vanillyl alcohol was only observed extracellularly, the reduction of vanillin was thought to be catalyzed by a membrane system.  相似文献   

9.
Candida galli strain PGO6 isolated from oil-contaminated water is the first isolated yeast strain which is capable to form vanillin and vanillic acid during isoeugenol biotransformation. The products were confirmed by thin-layer chromatography (TLC), changes in the UV absorption pattern and high-performance liquid chromatography (HPLC). The phenotypic and physiochemical characteristics as well as molecular phylogenetic analysis based on amplification the ITS1-5.8S-ITS2 rDNA regions indicated the isolated strain PGO6 was identified as C. galli (GenBank accession number HM641231). Resting cells of C. galli PGO6 from the late-exponential of growth phase were used as biocatalysts for the biotransformation of isoeugenol. The optimal molar conversion of vanillin (48%) and vanillic acid (19%) was obtained after a 30 h incubation using 0.1% (v/v) of isoeugenol and 6 mg of dry weight of cells per ml without further optimization. Under these conditions, the total amount of vanillin and vanillic acid was 583 mg l(-1). Further biotransformation was carried out using 0.5% (v/v) of isoeugenol under the resting cells conditions, yielding a vanillin concentration of 1.12 g l(-1) (molar yield 25.7%) after 60 h incubation. This study brings the first evidence for biotransformation of isoeugenol to vanillin and vanillic acid by a yeast strain.  相似文献   

10.
Ferulic acid metabolism was studied in cultures of two micromycetes producing different amounts of phenol oxidases. In cultures of the low phenol oxidase producer Paecilomyces variotii, ferulic acid was decarboxylated to 4-vinylguaiacol, which was converted to vanillin and then either oxidized to vanillic acid or reduced to vanillyl alcohol. Vanillic acid underwent simultaneously an oxidative decarboxylation to methoxyhydroquinone and a nonoxidative decarboxylation to guaiacol. Methoxyhydroquinone and guaiacol were demethylated to yield hydroxyquinol and catechol, respectively. Catechol was hydroxylated to pyrogallol. Degradation of ferulic acid by Paecilomyces variotii proceeded mainly via methoxyhydroquinone. The high phenol oxidase producer Pestalotia palmarum catabolized ferulic acid via 4-vinylguaiacol, vanillin, vanillyl alcohol, vanillic acid, and methoxyhydroquinone. However, the main reactions observed with this fungus involved polymerization reactions.  相似文献   

11.
A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth medium. Vanillic acid was readily recovered from the spent medium by a combination of acid precipitation and ether extraction at greater than or equal to 96% molar yield and upon recrystallization from glacial acetic acid was obtained in greater than or equal to 99% purity.  相似文献   

12.
A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth medium. Vanillic acid was readily recovered from the spent medium by a combination of acid precipitation and ether extraction at greater than or equal to 96% molar yield and upon recrystallization from glacial acetic acid was obtained in greater than or equal to 99% purity.  相似文献   

13.
AIMS: The ability of lactic acid bacteria (LAB) to metabolize certain phenolic precursors to vanillin was investigated. METHODS AND RESULTS: Gas chromatography-mass spectrometry (GC-MS) or HPLC was used to evaluate the biosynthesis of vanillin from simple phenolic precursors. LAB were not able to form vanillin from eugenol, isoeugenol or vanillic acid. However Oenococcus oeni or Lactobacillus sp. could convert ferulic acid to vanillin, but in low yield. Only Lactobacillus sp. or Pediococcus sp. strains were able to produce significant quantities of 4-vinylguaiacol from ferulic acid. Moreover, LAB reduced vanillin to the corresponding vanillyl alcohol. CONCLUSIONS: The transformation of phenolic compounds tested by LAB could not explain the concentrations of vanillin observed during LAB growth in contact with wood. SIGNIFICANCE AND IMPACT OF THE STUDY: Important details of the role of LAB in the conversion of phenolic compounds to vanillin have been elucidated. These findings contribute to the understanding of malolactic fermentation in the production of aroma compounds.  相似文献   

14.
We systematically evaluated the antioxidant activity of ethyl vanillin, a vanillin analog, as compared with the activities of vanillin and other vanillin analogs using multiple assay systems. Ethyl vanillin and vanillin exerted stronger antioxidant effects than did vanillyl alcohol or vanillic acid in the oxygen radical absorbance capacity (ORAC) assay, although the antioxidant activities of vanillyl alcohol and vanillic acid were clearly superior to those of ethyl vanillin and vanillin in the three model radical assays. The antioxidant activity of ethyl vanillin was much stronger than that of vanillin in the oxidative hemolysis inhibition assay, but was the same as that of vanillin in the ORAC assay. Oral administration of ethyl vanillin to mice increased the concentration of ethyl vanillic acid, and effectively raised antioxidant activity in the plasma as compared to the effect of vanillin. These data suggest that the antioxidant activity of ethyl vanillin might be more beneficial than has been thought in daily health practice.  相似文献   

15.
We systematically evaluated the antioxidant activity of ethyl vanillin, a vanillin analog, as compared with the activities of vanillin and other vanillin analogs using multiple assay systems. Ethyl vanillin and vanillin exerted stronger antioxidant effects than did vanillyl alcohol or vanillic acid in the oxygen radical absorbance capacity (ORAC) assay, although the antioxidant activities of vanillyl alcohol and vanillic acid were clearly superior to those of ethyl vanillin and vanillin in the three model radical assays. The antioxidant activity of ethyl vanillin was much stronger than that of vanillin in the oxidative hemolysis inhibition assay, but was the same as that of vanillin in the ORAC assay. Oral administration of ethyl vanillin to mice increased the concentration of ethyl vanillic acid, and effectively raised antioxidant activity in the plasma as compared to the effect of vanillin. These data suggest that the antioxidant activity of ethyl vanillin might be more beneficial than has been thought in daily health practice.  相似文献   

16.
Zheng L  Zheng P  Sun Z  Bai Y  Wang J  Guo X 《Bioresource technology》2007,98(5):1115-1119
A new technology of transforming ferulic acid, which was from waste residue of rice bran oil, into vanillin was developed by a combination of fungal strains Aspergillus niger CGMCC0774 and Pycnoporus cinnabarinus CGMCC1115. Various concentrations of ferulic acid were compared, and the highest yield reached 2.2 g l(-1) of vanillic acid by A. niger CGMCC0774 in a 25 l fermenter when concentration of ferulic acid was 4 g l(-1). The filtrate of A. niger CGMCC0774 culture was concentrated and vanillic acid in the filtrate was bio-converted into vanillin by P. cinnabarinus CGMCC1115. The yield of vanillin reached 2.8 g l(-1) when 5 g l(-1) of glucose and 25 g of HZ802 resin were supplemented in the bioconversion medium. The 13C isotope analysis indicated that delta13C(PDB) of vanillin prepared was much different from chemically synthesized vanillin.  相似文献   

17.
在25 L发酵罐中黑曲霉Aspergillus niger CGMCC0774转化阿魏酸可生成香草酸2.24 g/L,摩尔转化率64.6%;朱红密孔菌Pycnoporus cinnabarinus CGMCC1115转化提取的香草酸可生成香草醛1.45 g/L,摩尔转化率为79.9%。将两步微生物转化有机串联,即用黑曲霉转化液加预先培养的朱红密孔菌Pycnoporus cinnabarinus CGMCC1115菌丝体继续转化,可产香草醛1.06 g/L,对原料阿魏酸的摩尔转化率34.0%。用米糠提取的天然阿魏酸做原料,两步串联微生物转化制备的生物香兰素经13C同位素的分析,符合生物香草素的等同要求。  相似文献   

18.
微生物转化方法生产香草酸与香草醛的初步研究   总被引:7,自引:2,他引:5  
从实验室保藏的菌种中筛选到一株黑曲霉(Aspergillus niger)SW-33,能够将1g/L的阿魏酸底物转化为0.23g/L的香草酸,相应的摩尔转化率为29.35%;流加四次底物阿魏酸后,产物浓度达到1.11g/L,相应的摩尔转化率为44.9%。为了提高产物浓度,对培养基和发酵条件进行优化,使得该菌株能够将1g/l的阿魏酸底物转化为0.46g/L的香草酸,相应的摩尔转化率为57.81%。提取得到的香草酸,经HPLC测定,纯度为85.9%;提取收率为75.2%。用含香草酸的转化液,或者用提取的结晶香草酸,加入朱红密孔菌(Prcnporus cinnabarnus)SW-0203发酵培养液,可得到转化产物香草醛。  相似文献   

19.
Streptomyces sannanensis MTCC 6637 was examined for its potentiality to transform ferulic acid into its corresponding hydroxybenzoate-derivatives. Cultures of S. sannanensis when grown on minimal medium containing ferulic acid as sole carbon source, vanillic acid accumulation was observed in the medium as the major biotransformed product along with transient formation of vanillin. A maximum amount of 400 mg/l vanillic acid accumulation was observed, when cultures were grown on 5 mM ferulic acid at 28°C. This accumulation of vanillic acid was found to be stable in the culture media for a long period of time, thus facilitating its recovery. Purification of vanillic acid was achieved by gel filtration chromatography using Sephadex™ LH-20 matrix. Catabolic route of ferulic acid biotransformation by S. sannanensis has also been demonstrated. The metabolic inhibitor experiment [by supplementation of 3,4 methylenedioxy-cinnamic acid (MDCA), a metabolic inhibitor of phenylpropanoid enzyme 4-hydroxycinnamoyl-CoA ligase (4-CL) along with ferulic acid] suggested that biotransformation of ferulic acid into vanillic acid mainly proceeds via CoA-dependent route. In vitro conversions of ferulic acid to vanillin, vanillic acid and vanillin to vanillic acid were also demonstrated with cell extract of S. sannanensis. Further degradation of vanillic acid to other intermediates such as, protocatechuic acid and guaiacol was not observed, which was also confirmed in vitro with cell extract.  相似文献   

20.
During bacterial degradation of methoxylated lignin monomers, such as vanillin and vanillic acid, formaldehyde is released through the reaction catalyzed by vanillic acid demethylase. When Burkholderia cepacia TM1 was grown on vanillin or vanillic acid as the sole carbon source, the enzymes 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI) were induced. These enzymes were also expressed during growth on Luria-Bertani medium containing formaldehyde. To understand the roles of these enzymes, the hps and phi genes from a methylotrophic bacterium, Methylomonas aminofaciens 77a, were introduced into B. cepacia TM1. The transformant strain constitutively expressed the genes for HPS and PHI, and these activities were two- or threefold higher than the activities in the wild strain. Incorporation of [14C]formaldehyde into the cell constituents was increased by overexpression of the genes. Furthermore, the degradation of vanillic acid and the growth yield were significantly improved at a high concentration of vanillic acid (60 mM) in the transformant strain. These results suggest that HPS and PHI play significant roles in the detoxification and assimilation of formaldehyde. This is the first report that enhancement of the HPS/PHI pathway could improve the degradation of vanillic acid in nonmethylotrophic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号