首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Peripheral blood mononuclear cells (PBMC) from patients with ataxia-telangiectasia (A-T) were studied for their capacity to proliferate and to generate influenza virus-specific cytotoxic T lymphocytes (CTL) after in vitro stimulation with influenza A/Hong Kong (A/HK (H3N2)) virus. PBMC from 11 patients proliferated poorly to A/HK and 10 of the 11 patients failed to exhibit significant CTL effector activity when tested on influenza A/HK virus-infected autologous target cells. In contrast, PBMC from each of 18 simultaneously studied, unrelated normal individuals proliferated to A/HK and generated influenza-immune CTL. In each of the 10 A-T patients, deficient CTL activity was shown to be due to a lack of generation of CTL and not to target cell resistance to lysis, because the virtually infected target cells of the patients were lysed by parental influenza-immune CTL. Determinations of T cell numbers and existing serum antibody titers to H3N2 influenza virus suggest this nonresponsiveness cannot be simply explained by a lack of T cells or the absence of exposure to type A (H3N2) influenza virus. Studies in which CTL were generated in A-T plasmas and during co-culture of PBMC from an A-T patient and an MHC-matched sibling failed to demonstrate either plasma or cellular suppression as a mechanism for the lack of CTL production in A-T patients. This immune defect in the production of cytotoxic effector T cells may be a cause of the increased frequency of infections and neoplasms observed in A-T patients.  相似文献   

2.
The frequency of memory T cells in the spleens of mice primed with the A/Puerto Rico/8/34/1 (H1N1) (PR8) influenza A virus was determined using limiting dilution protocols. The mean frequency of memory cytotoxic T lymphocytes (CTL) in spleen populations from mice primed with PR8 and restimulated in vitro with the same virus ranged, in six experiments, from 1 in 1600 to 1 in 4800. In the same experiments, the frequencies of CTL capable of lysing targets infected with the heterologous A/Hong Kong/×31/68 (H3N2) (HK) virus ranged from 1 in 1700 to 1 in 4700 nucleated spleen cells. Thus, at least 80% of PR8 (H1N1) influenza-specific cytotoxic T cells are lytic for both HK (H3N2)- and PR8-infected target cells. Further analysis of the specificity of a series of monoclonal influenza-specific CTL was achieved by expanding limit dilution cultures and then testing lytic capacity for targets infected with a range of influenza A viruses. This approach confirmed that the great majority of PR8-primed influenza-specific CTL are cross-reactive for a variety of influenza A subtypes. These experiments demonstrate the feasibility of quantitating different influenza-immune CTL specificities at a stage very close to removal of cells from the animal.  相似文献   

3.
The in vitro activity of influenza-specific cytotoxic T cells can be inhibited by incubation of the target cells with monoclonal anti-influenza antibodies. Hybridoma antibodies that bind to the virus HA inhibit the cytotoxic activity of TDL for the virus-infected target by as much as 80%, whereas these same antibodies never reduce splenic T cell function by more than 40%. This reflects the fact that TDL from anti-influenza strain A/WSN/33 (HON1) are highly subtype-specific, whereas splenic effector cells from the same mice are cross-reactive for target cells infected with heterologous influenza A viruses. These findings are discussed in the light of previous failures to block virus-immune T cell effector function with heterogeneous antisera produced in vivo, and are considered to favor the idea that at least some of the "virus-immune" T cells are indeed recognizing viral antigens.  相似文献   

4.
A gamma delta T-cell hybridoma established from influenza virus-infected mice responded to a reproducible way when cultured with influenza virus-infected stimulators. Subclones of this line responded to cells infected with influenza viruses A/PR/8/34 (H1N1), X-31 (H3N2), and B/HK/8/73 but not to cells infected with vaccinia virus or Sendai virus. This spectrum of response to both type A and type B orthomyxoviruses has never been recognized for the alpha beta T-cell receptor-positive subsets. There was no response to cells infected with a panel of recombinant vaccinia viruses expressing all individual influenza virus proteins, and so it is unlikely that the stimulating antigen is of viral origin. The alternative is that the antigen is a cellular molecule induced in influenza virus-infected cells. Infectious virus was required for stimulation, and immunofluorescence studies showed increased expression of heat shock protein 60 (Hsp60) in influenza virus- but not Sendai virus- or vaccinia virus-infected cells. Both the hybridoma generated from influenza virus-infected mice and an established hybridoma which uses the same gamma delta T-cell receptor combination responded to recombinant Hsp60. Furthermore, the Hsp60-reactive hybridoma, which was obtained from an uninfected mouse, also responded to influenza virus-infected cells, indicating that Hsp60 may indeed be the target antigen.  相似文献   

5.
Parenteral immunization of mice with a given strain of type A influenza virus generates two subpopulations of cytotoxic T cells in the in vivo primary response. One subpopulation is specific for the immunizing virus; the other subpopulation cross-reacts with target cells infected with type A influenza virus of a different subtype. Both subpopulations are specific for target cells infected with type A influenza virus and optimally lyse only infected targets which are syngeneic at the H-2 gene locus. In vitro stimulation of previously primed spleen cells with cells infected with homologous virus generates both subpopulations in the secondary cytotoxic response. However, in vitro stimulation of primed cells with cells infected with heterologous type A virus of a different subtype specifically selects for the cross-reactive T-cell population. These results are discussed in terms of current models for T-cell recognition of virus-infected cells and possible mechanisms for cross-reaction between type A influenza viruses of different subtypes at the level of cytotoxic T cells.  相似文献   

6.
The influenza A virus hemagglutinin (HA) is an integral membrane glycoprotein expressed in large quantities on infected cell surfaces and is known to serve as a target antigen for influenza virus-specific cytotoxic T lymphocytes (CTL). Despite the fact that HAs derived from different influenza A virus subtypes are serologically non-cross-reactive, the HA has been implicated by previous experiments to be a target antigen for the subset of T cells capable of lysing cells infected with any human influenza A subtype (cross-reactive CTL). To directly determine whether the HA is recognized by cross-reactive CTL, we used vaccinia virus recombinants containing DNA copies of the PR8 (A/Puerto Rico/8/34) (H1N1) or JAP (A/JAP/305) (H2N2) HA genes. When these viruses were used to stimulate HA-specific CTL and to sensitize target cells for lysis by HA-specific CTL, we found no evidence for HA recognition by cross-reactive CTL aside from a relatively small degree of cross-reactivity between H1 and H2 HAs. Results of unlabeled target inhibition studies were consistent with the conclusion that the HA is, at most, only a minor target antigen for cross-reactive CTL.  相似文献   

7.
Cytotoxic T cells specific for influenza virus A/HK or Epstein-Barr virus were used to study the heterogeneity of the HLA-A3 molecule. Variability of the recognition of HLA-A3 in both systems was observed. The hierarchy was both effector cell and target cell specific. An extreme example of the hierarchy of HLA-A3 recognition is the following. Virus-specific cytotoxic T lymphocytes of a given donor were found to recognize all HLA-A3-matched target cells, including target cells of a donor from whom the virus-specific effector cells did not recognize target cells of that given donor: Donor A recognizes target B but donor B does not recognize target A. Both will recognize a third HLA-A3-matched target cell C. Cold target inhibition studies confirmed that the recognition of target cell B by effector cell A involved the recognition of only HLA-A3. Examples of such asymmetric recognition were found in both influenza A and Epstein-Barr virus-specific cytotoxic T-lymphocyte responses but not one combination was asymmetric in both systems. This suggests that influenza virus A/HK-specific cytotoxic T lymphocytes recognize other HLA-A3 histotopes than do Epstein-Barr virus-specific cytotoxic T lymphocytes.  相似文献   

8.
Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue virus type 4-immune donor generated virus-specific, serotype-cross-reactive, CD8+, class I-restricted cytotoxic T lymphocytes (CTL) capable of lysing dengue virus-infected cells and cells pulsed with dengue virus antigens of all four serotypes. These CTL lysed autologous fibroblasts infected with vaccinia virus-dengue virus recombinant viruses containing the E gene or several nonstructural dengue virus type 4 genes. These results demonstrate that both dengue virus structural and nonstructural proteins are targets for the cytotoxic T-cell-mediated immune response to dengue virus and suggest that serotype-cross-reactive CD8+ CTL may be important mediators of viral clearance and of virus-induced immunopathology during secondary dengue virus infections.  相似文献   

9.
In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8(+) T cells from inbred chickens (B(2)/B(2)) infected with an H9N2 influenza virus to naive inbred chickens (B(2)/B(2)) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8(+) T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses.  相似文献   

10.
The specificity of in vitro induced human influenza-immune cytotoxic effector cells was analyzed with respect to recognition of HLA-A and -B-linked gene products. The influenza-immune cytotoxic activity observed on panels of virus-infected targets demonstrated that virus-immune effectors preferentially lyse targets with which they share HLA-A or -B specificities. Virus-immune effectors from certain donors recognized virus in conjunction with some, but not all, of their self HLA-A and -B antigens. Among donors who share a given HLA antigen (such as A2 or B7), there are differences in the ability of their virus-immune T cells to recognize the shared antigen. Virus-infected target cells from HLA-A2 or -B7 "nonresponder" donors could be lysed by virus-immune T cells obtained from other donors who shared only the HLA-A2 or -B7 antigen with these target cells. These observations suggest that the absence of cytotoxic T cell responses by some donors to influenza virus in conjunction with HLA-A2 or -B7 is not due to control by the structural genes that code for these HLA antigens, but rather may result from control by regulatory genes that act at the level of the responder and/or stimulator cell. The results are discussed in the context of Ir gene regulation of human T cell responses.  相似文献   

11.
The generation of human cytotoxic T cell clones with specificity for influenza virus and some of their characteristics are described. The clones were generated by limiting dilution of peripheral blood lymphocytes after two in vitro stimulations with autologous influenza A/USSR virus-infected cells and were grown in T cell growth factor. The majority of the virus-specific clones showed cross-reactivity for different influenza A virus subtypes but did not recognize influenza B virus-infected cells. The HLA specificity of two clones was further analyzed. One clone, LL33, was specific for HLA-Bw60, the other, clone WH5, for HLA-A1. Clone WH5 also seemed to recognize the serologically related HLA-A26 as restriction element for the recognition of the viral antigen. Whereas the virus-specific CTL clones had the OKT3+,4-,8+ phenotype, another clone, WH 49, exhibiting natural killer-like activity, was found to have the OKT3+,4+,8- phenotype.  相似文献   

12.
This report describes studies characterizing the virus-specific cytotoxic effector cells which are present in the spleens of mice 7 days after infection with Coxsackievirus B-3. An in vitro 51Cr assay employing eyngeneic virus-infected neonatal fibroblasts was used to measure cytotoxic activity. Treatment of immune cells with (anti-thy-1.2) and complement abolished dtheir cytotoxic activity, but no reduction occurred when B cells were removed by incubation with anti-Ig and complement or macrophages eliminated by adherence depletion. The findings therefore imply that the cytotoxic reaction was mediated by sensitized T cells and that B cells and macrophages did not play an important role. Reciprocal assays performed with BALB/c and CBA/J cells showed that Coxsackievirus-immune spleen cells lysed infected syngeneic targets but not allogeneic targets, providing further evidence that cytotoxicity was mediated by effector T cells. In addition and in vitro assay system employing neonatal myocardial cells was developed and used to demonstrate that Coxsackievirus-infected myofibers were susceptible to destruction by immune spleen cells. The evidence suggests that mice infected with Coxsackie B viruses are able to mount a cell-mediated immune response with production of cytotoxic T cells which have the capacity to damage tissues infected with these agents.  相似文献   

13.
Human natural killer (NK) cells show high cytotoxic activity against target cells infected with herpes simplex virus type 1 (HSV-1). Substantial amounts of interferon (IFN) were generated in co-cultures of NK effector cells and infected target cells; however, the cytotoxic activity seen against a specific infected cell target did not correlate with the amount of IFN induced. The production of IFN increased steadily from 4 to 18 hr of co-culture, as did NK activity; however, IFN production peaked 4 hr later than NK activity. Pretreatment of NK effector cells with exogenous IFN increased cytotoxic activity against all targets tested, but the differential pattern of reactivity against cells infected with wild type and mutant viruses was unaltered. When effector cells were treated with the RNA synthesis inhibitor actinomycin D before co-culture with virus-infected targets, IFN production was markedly reduced, without a concomitant reduction in cytotoxicity. Similarly, the addition of anti-IFN antiserum to co-cultures greatly decreased the available IFN present, but had no effect on NK activity. We conclude that the induction of cytotoxic activity in co-cultures of NK effector cells and HSV-1-infected target cells is independent of the induction of IFN.  相似文献   

14.
CD8(+) cytotoxic T lymphocytes (CTLs) generated by immunization with allogeneic cells or viral infection are able to lyse allogeneic or virally infected in vitro cells (e.g., lymphoma and mastocytoma). In contrast, it is reported that CD8(+) T cells are not essential for allograft rejection (e.g., heart and skin), and that clearance of influenza or the Sendai virus from virus-infected respiratory epithelium is normal or only slightly delayed after a primary viral challenge of CD8-knockout mice. To address this controversy, we generated H-2(d)-specific CD8(+) CTLs by a mixed lymphocyte culture and examined the susceptibility of a panel of H-2(d) cells to CTL lysis. KLN205 squamous cell carcinoma, Meth A fibrosarcoma, and BALB/c skin components were found to be resistant to CTL-mediated lysis. This resistance did not appear to be related to a reduced expression of MHC class I molecules, and all these cells could block the recognition of H-2(d) targets by CTLs in cold target inhibition assays. We extended our observation by persistently infecting the same panel of cell lines with defective-interfering Sendai virus particles. The Meth A and KLN205 lines infected with a variant Sendai virus were resistant to lysis by Sendai virus-specific CTLs. The Sendai virus-infected Meth A and KLN205 lines were able to block the lysis of Sendai virus-infected targets by CTLs in cold target inhibition assays. Taken together, these results suggest that not all in vivo tissues may be sensitive to CTL lysis.  相似文献   

15.
本文用EB病毒转化自体淋巴细胞所建立的类淋巴母细胞系(LCL),以及用EB病毒潜伏感染膜蛋白(LMP)基因和核蛋白-2(EBNA2)基因与痘苗病毒重组的重组病毒(Vac-LMP和Vac-EBNA2)感染的自身纤维母细胞,同时作为刺激细胞和靶细胞,以~(51)Cr释放法检测5例血清中EB病毒VCA—IgA抗体阳性者及1例阴性健康者外周血单个核细胞(PBMC)的特异性T细胞杀伤效应。结果表明,用自身LCL激活的EB病毒特异性T细胞杀伤效应高峰出现在第14~28天;参与杀伤性细胞免疫反应的T细胞亚群主要是T3、T8阳性的细胞毒性T细胞,其对靶细胞的识别及杀伤受HLA-I的限制。用重组牛痘病毒感染的纤维母细胞作靶细胞或刺激细胞,有1例供者可接受LMP,另1例可接受EBNA2的刺激,并对相应的靶细胞产生特异性T细胞杀伤反应,表明EB病毒-LMP和EBNA2可能既是EB病毒特异性T细胞的刺激抗原,又是其识别的靶抗原。  相似文献   

16.
The nonstructural NS2 protein of influenza A/PR/8/34 virus was efficiently expressed in bacteria, and monospecific antisera were prepared against the bacterially synthesized polypeptide. These antisera were cross-reactive among the NS2 proteins of various influenza A viruses. However, they did not react with the NS2 of influenza B/Lee/40 virus nor with other proteins of influenza A viruses such as NS1. Antisera against NS2 were used to determine that the NS2 protein is localized in the cell nucleus during influenza virus infection, as shown by immunofluorescence microscopy. Cells infected with simian virus 40 recombinants containing the influenza virus NS gene revealed that both the NS1 and NS2 proteins appeared in the nucleus, even in the absence of expression of other influenza virus-specific components.  相似文献   

17.
R A Lamb  S L Zebedee  C D Richardson 《Cell》1985,40(3):627-633
The influenza A virus M2 protein is expressed abundantly at the cell surface, and in addition to the hemagglutinin (HA) and neuraminidase (NA), is a third virus-specific membrane protein. M2 has an internal hydrophobic membrane anchorage domain and associates with the same cellular membrane fractions as HA and NA. Trypsin treatment of infected cells and immunoprecipitation with site-specific antisera indicate that a minimum of 18 NH2-terminal amino acids of M2 are exposed at the cell surface. Ten NH2-terminal residues are conserved in all strains of influenza A virus for which sequences are available. Antibodies can recognize M2 on the cell surface and therefore it may be an infected-cell surface antigen. We discuss properties of M2 that match it to the elusive major target molecule on influenza A virus-infected cells for cross-reactive cytotoxic T cells.  相似文献   

18.
Influenza virus is a source of significant health and economic burden from yearly epidemics and sporadic pandemics. Given the potential for the emerging H7N9 influenza virus to cause severe respiratory infections and the lack of exposure to H7 and N9 influenza viruses in the human population, we aimed to quantify the H7N9 cross-reactive memory T cell reservoir in humans and mice previously exposed to common circulating influenza viruses. We identified significant cross-reactive T cell populations in humans and mice; we also found that cross-reactive memory T cells afforded heterosubtypic protection by reducing morbidity and mortality upon lethal H7N9 challenge. In context with our observation that PR8-primed mice have limited humoral cross-reactivity with H7N9, our data suggest protection from H7N9 challenge is indeed mediated by cross-reactive T cell populations established upon previous priming with another influenza virus. Thus, pre-existing cross-reactive memory T cells may limit disease severity in the event of an H7N9 influenza virus pandemic.  相似文献   

19.
Influenza infection stimulates protective host immune responses but paradoxically enhances lung indoleamine 2,3 dioxygenase (IDO) activity, an enzyme that suppresses helper/effector T cells and activates Foxp3-lineage regulatory CD4 T cells (Tregs). Influenza A/PR/8/34 (PR8) infection stimulated rapid elevation of IDO activity in lungs and lung-draining mediastinal lymph nodes (msLNs). Mice lacking intact IDO1 genes (IDO1-KO mice) exhibited significantly lower morbidity after sub-lethal PR8 infection, and genetic or pharmacologic IDO ablation led to much faster recovery after virus clearance. More robust influenza-specific effector CD8 T cell responses manifested in lungs of PR8-infected IDO1-KO mice, though virus clearance rates were unaffected by IDO ablation. Similar outcomes manifested in mice infected with a less virulent influenza A strain (X31). IDO induction in X31-infected lungs was dependent on IFN type II (IFNγ) signaling and was restricted to non-hematopoietic cells, while redundant IFN type 1 or type II signaling induced IDO exclusively in hematopoietic cells from msLNs. Memory T cells generated in X31-primed IDO1-KO mice protected mice from subsequent challenge with lethal doses of PR8 (100×LD50). However recall T cell responses were less robust in lung interstitial tissues, and classic dominance of TCR Vβ8.3 chain usage amongst memory CD8+ T cells specific for influenza nucleoprotein (NP366) did not manifest in IDO1-KO mice. Thus, influenza induced IDO activity in lungs enhanced morbidity, slowed recovery, restrained effector T cell responses in lungs and shaped memory T cell repertoire generation, but did not attenuate virus clearance during primary influenza A infection.  相似文献   

20.
BALB/c mice were primed with type A influenza virus by footpad injection or by aerosol infection with PR8 [A/PR/8/34-(H1N1)]. Isolated T cells from draining lymph nodes were then tested for their proliferation in the presence of purified viral proteins hemagglutinin, neuraminidase, matrix, and nucleoprotein. Significant responses [( 3H]thymidine incorporation) were seen against each of the four proteins after either priming scheme. When helper T (TH) cell clones were isolated by hybridoma formation from two different strains of mice, responsiveness (interleukin 2 production) towards each protein was against apparent. Of 12 virus-specific T cell hybridomas isolated, four responded to matrix, three to nucleoprotein, one to neuraminidase, three to hemagglutinin, and one cell was of undefined specificity. Each hybridoma was also tested for recognition of the HK virus [A/Hong Kong/1/68-(H3N2)], which differs in subtype from the priming strain. All matrix-specific cells, two nucleoprotein-specific cells, and the cell of undefined specificity were cross-reactive with HK virus. H1-subtype specificity was seen for all hemagglutinin and neuraminidase-specific cells and one of the three nucleoprotein-specific cells. Because many virus-immune TH cells recognize antigenically variable determinants, a significant fraction of TH cell function may be lost after virus evolution. When selecting priming schemes for long-term immunization against influenza, the isolated enhancement of TH cells recognizing conserved determinants on matrix and nucleoprotein may therefore be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号