首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner membranes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.  相似文献   

2.
Maintenance of functional mitochondria requires fusion and fission of these dynamic organelles. The proteins that regulate mitochondrial dynamics are now associated with a broad range of cellular functions. Mitochondrial fission and fusion are often viewed as a finely tuned balance within cells, yet an integrated and quantitative understanding of how these processes interact with each other and with other mitochondrial and cellular processes is not well formulated. Direct visual observation of mitochondrial fission and fusion events, together with computational approaches promise to provide new insight.  相似文献   

3.
Mitochondria are highly specialized in function, but mitochondrial and, therefore, cellular integrity is maintained through their dynamic nature. Through the frequent processes of fusion and fission, mitochondria continuously change in shape and adjust function to meet cellular requirements. Abnormalities in fusion/fission dynamics generate cellular dysfunction that may lead to diseases. Mutations in the genes encoding mitochondrial fusion/fission proteins, such as MFN2 and OPA1, have been associated with an increasing number of genetic disorders, including Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy. In this review, we address the mitochondrial dynamic changes in several important genetic diseases, which will bring the new insight of clinical relevance of mitochondrial genetics.  相似文献   

4.
Mitochondria are highly dynamic organelles that continuously change their shape through frequent fusion, fission and movement throughout the cell, and these dynamics are crucial for the life and death of the cells as they have been linked to apoptosis, maintenance of cellular homeostasis, and ultimately to neurologic disorders and metabolic diseases. Over the past decade, a growing number of novel proteins that regulate mitochondrial dynamics have been discovered. Large GTPase family proteins and their regulators control these aspects of mitochondrial dynamics. In this review, we briefly summarize the current knowledge about molecular machineries regulating mitochondrial fusion/fission and the role of mitochondrial dynamics in cell pathophysiology.  相似文献   

5.
Mitochondria are sensitive organelles that sense intrinsic and extrinsic stressors and maintain cellular physiological functions through the dynamic homeostasis of mitochondrial fusion and fission. Numerous pathological processes are associated with mitochondrial fusion and fission disorders. However, the molecular mechanism by which stress induces cardiac pathophysiological changes through destabilising mitochondrial fusion and fission is unclear. Therefore, this study aimed to investigate whether the endoplasmic reticulum stress signalling pathway initiated by the turbulence of mitochondrial fusion and fission under stressful circumstances is involved in cardiomyocyte damage. Based on the successful establishment of the classical stress rat model of restraint plus ice water swimming, we measured the content of serum lactate dehydrogenase. We used haematoxylin–eosin staining, special histochemical staining, RT-qPCR and western blotting to clarify the cardiac pathology, ultrastructural changes and expression patterns of mitochondrial fusion and fission marker proteins and endoplasmic reticulum stress signalling pathway proteins. The results indicated that mitochondrial fusion and fission markers and proteins of the endoplasmic reticulum stress JNK signalling pathway showed significant abnormal dynamic changes with the prolongation of stress, and stabilisation of mitochondrial fusion and fission using Mdivi-1 could effectively improve these abnormal expressions and ameliorate cardiomyocyte injury. These findings suggest that stress could contribute to pathological cardiac injury, closely linked to the endoplasmic reticulum stress JNK signalling pathway induced by mitochondrial fusion and fission turbulence.  相似文献   

6.
Mitochondria in mammalian cells are visualized as a network or as filaments that undergo continuous changes in shape and in localization within the cells. These changes are a consequence of the activity of different processes such as mitochondrial fusion and fission, and mitochondrial remodelling. In all, these processes are referred to as mitochondrial dynamics, and relevant questions, still unexplained, are why cells require such an active dynamics, or why mitochondria move to specific cellular regions. In this review we will summarize some of the biological functions assigned to the proteins identified as participating in mitochondrial fusion, namely mitofusin 1, mitofusin 2 and OPA1. In addition to the capacity of these proteins to promote fusion, mitofusin 2 or OPA1 regulate mitochondrial metabolism and loss-of-function reduces oxygen consumption and the capacity to oxidize substrates. We propose that mitochondrial fusion proteins operate as integrators of signals so they regulate both mitochondrial fusion and metabolism.  相似文献   

7.
Mitochondrial dynamics greatly influence the biogenesis and morphology of mitochondria. Mitochondria are particularly important in neurons, which have a high demand for energy. Therefore, mitochondrial dysfunction is strongly associated with neurodegenerative diseases. Until now various post-translational modifications for mitochondrial dynamic proteins and several regulatory proteins have explained complex mitochondrial dynamics. However, the precise mechanism that coordinates these complex processes remains unclear. To further understand the regulatory machinery of mitochondrial dynamics, we screened a mitochondrial siRNA library and identified mortalin as a potential regulatory protein. Both genetic and chemical inhibition of mortalin strongly induced mitochondrial fragmentation and synergistically increased Aβ-mediated cytotoxicity as well as mitochondrial dysfunction. Importantly we determined that the expression of mortalin in Alzheimer disease (AD) patients and in the triple transgenic-AD mouse model was considerably decreased. In contrast, overexpression of mortalin significantly suppressed Aβ-mediated mitochondrial fragmentation and cell death. Taken together, our results suggest that down-regulation of mortalin may potentiate Aβ-mediated mitochondrial fragmentation and dysfunction in AD.  相似文献   

8.
Mitochondrial dynamics: to be in good shape to survive   总被引:4,自引:0,他引:4  
Mitochondria are essential organelles of all eukaryotic cells that play a key role in several physiological processes and are involved in the pathology of many diseases. These organelles form a highly dynamic network, which results from continuous fusion and fission processes. Importance of these processes is underlined by inherited human diseases caused by mutations in two mitochondrial pro-fusion genes: Charcot-Marie-Tooth disease, caused by mutations in Mitofusin 2 gene and ADOA due to mutations in OPA1. During apoptosis, the mitochondrial network is disintegrated and the outer mitochondrial membrane permeabilized, which results in the release of several apoptogenic proteins, including cytochrome c. Although modulating mitochondrial fusion and fission machineries has been reported to influence the apoptotic response to various stimuli, it is still unclear whether fission is absolutely required for apoptosis. In this review, we present the latest progress in the field of mitochondrial dynamics with a particular emphasis on its implication in apoptosis and in diseases.  相似文献   

9.
Mitochondria are involved in a variety of cellular metabolic processes, and their functions are regulated by extrinsic and intrinsic stimuli including viruses. Recent studies have shown that mitochondria play a central role in the primary host defense mechanisms against viral infections, and a number of novel viral and mitochondrial proteins are involved in these processes. Some viral proteins localize in mitochondria and interact with mitochondrial proteins to regulate cellular responses. This review summarizes recent findings on the functions and roles of these molecules as well as mitochondrial responses to viral infections.  相似文献   

10.
To probe the mitochondrial involvement in neurodegenerative processes, we have generated a high-resolution map of the mitochondrial proteome from a human neuroblastoma SH-SY5Y cell line that has been used for creating cytoplasmic hybrid cell systems. Two mitochondrial preparations were evaluated using two-dimensional (2D) gel electrophoresis and mass spectrometry; one obtained from differential centrifugation and the other by a multiple-step percoll/metrizamide gradient. The 2D gel maps prepared from these mitochondrial fractions separated over 300 distinct spots as visualized by colloidal Coomassie blue (CCB), or closer to 400 proteins with silver staining. The most abundant proteins identified in the mitochondrial fraction prepared by differential centrifugation were those of mitochondrial, cytoplasmic, and endoplasmic reticulum origin. Proteins obtained using the more intensive two-step gradient method were almost exclusively known to be associated with mitochondria. From this latter preparation, 84 of the most abundant gel spots were analyzed, out of which 61 proteins were identified. The absence of many membrane-associated proteins known to be associated with the mitochondrion and the limited number of total proteins observed in the 2D gel maps suggest that the majority of mitochondrial proteins are not being detected under these separation and staining conditions. An insoluble pellet obtained after solubilization of the mitochondrial fraction prepared with the percoll/metrizamide gradient was boiled in sodium dodecylsulfate (SDS) and separated by 1D sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). This separation yielded some additional proteins, many of which are likely membrane-associated. These studies form the basis for the analysis of differential protein expression in cybrid cellular models of neurodegenerative disorders and in affected tissue from diseased states.  相似文献   

11.
ATP-dependent oligomeric proteases are major components of cellular protein quality control systems. To investigate the role of proteolytic processes in the maintenance of mitochondrial functions, we analyzed the dynamic behavior of the mitochondrial proteome of Saccharomyces cerevisiae by two-dimensional (2D) polyacrylamide gel electrophoresis. By a characterization of the influence of temperature on protein turnover in isolated mitochondria, we were able to define four groups of proteins showing a differential susceptibility to proteolysis. The protein Pim1/LON has been shown to be the main protease in the mitochondrial matrix responsible for the removal of damaged or nonnative proteins. To assess the substrate range of Pim1 under in vivo conditions, we performed a quantitative comparison of the 2D protein spot patterns between wild-type and pim1Delta mitochondria. We were able to identify a novel subset of mitochondrial proteins that are putative endogenous substrates of Pim1. Using an in organello degradation assay, we confirmed the Pim1-specific, ATP-dependent proteolysis of the newly identified substrate proteins. We could demonstrate that the functional integrity of the Pim1 substrate proteins, in particular, the presence of intact prosthetic groups, had a major influence on the susceptibility to proteolysis.  相似文献   

12.
O-linked β-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification (PTM) consisting of a single N-acetylglucosamine moiety attached via an O-β-glycosidic linkage to serine and threonine residues. Glycosylation with O-GlcNAc occurs on myriad nuclear and cytosolic proteins from almost all functional classes. However, with respect to O-GlcNAcylated proteins special in mitochondria, little attention has been paid. In this study, we combined mass spectrometry and immunological methods to perform global exploration of O-GlcNAcylated proteins specific in mitochondria of rat liver. First, highly purified mitochondrial proteins were obviously shown to be O-GlcNAcylated by immunoblot profiling. Then, β-elimination followed by Michael Addition with Dithiothreitol (BEMAD) treatment and LC-MS/MS were performed to enrich and identify O-GlcNAcylated mitochondrial proteins, resulting in an unambiguous assignment of 14 O-GlcNAcylation sites, mapping to 11 O-GlcNAcylated proteins. Furthermore, the identified O-GlcNAcylated mitochondrial proteins were fully validated by both electron transfer dissociation tandem mass spectrometry (ETD/MS/MS) and western blot. Thus, for the first time, our study definitely not only identified but also validated that some mitochondrial proteins in rat liver are O-GlcNAcylated. Interestingly, all of these O-GlcNAcylated mitochondrial proteins are enzymes, the majority of which are involved in a wide variety of biological processes, such as urea cycle, tricarboxylic acid cycle and lipid metabolism, indicating a role for protein O-GlcNAcylation in mitochondrial function.  相似文献   

13.
Mitochondria are dynamic organelles whose functional integrity requires a coordinated supply of proteins and phospholipids. Defined functions of specific phospholipids, like the mitochondrial signature lipid cardiolipin, are emerging in diverse processes, ranging from protein biogenesis and energy production to membrane fusion and apoptosis. The accumulation of phospholipids within mitochondria depends on interorganellar lipid transport between the endoplasmic reticulum (ER) and mitochondria as well as intramitochondrial lipid trafficking. The discovery of proteins that regulate mitochondrial membrane lipid composition and of a multiprotein complex tethering ER to mitochondrial membranes has unveiled novel mechanisms of mitochondrial membrane biogenesis.  相似文献   

14.
The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation‐prone polyQ protein derived from human huntingtin. Expression of Q97‐GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97‐GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97‐GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post‐translational import of mitochondrial precursor proteins into mitochondria competes with aggregation‐prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate‐limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.  相似文献   

15.
Mitochondrial function is dependent upon regulation of biogenesis and dynamics. A number of studies have documented the importance of these organelles in both preimplantation embryos and embryonic stem cells (ESCs), however it remains unclear how mitochondria respond to their immediate microenvironment through modulation of morphology and movement, or whether perturbations in these processes will have a significant impact following differentiation/implantation. Here we review existing literature on two key aspects of nuclear–mitochondrial cross-talk and the dynamic processes involved in mediating mitochondrial function through regulation of mitochondrial biogenesis, morphology and movement, with particular emphasis on embryos and ESCs.  相似文献   

16.
Mitochondrial outer membrane permeability is conferred by a family of porin proteins. Mitochondrial porins conduct small molecules and constitute one component of the permeability transition pore that opens in response to apoptotic signals. Because mitochondrial porins have significant roles in diverse cellular processes including regulation of mitochondrial ATP and calcium flux, we sought to determine their importance in learning and synaptic plasticity in mice. We show that fear conditioning and spatial learning are disrupted in porin-deficient mice. Electrophysiological recordings of porin-deficient hippocampal slices reveal deficits in long and short term synaptic plasticity. Inhibition of the mitochondrial permeability transition pore by cyclosporin A in wild-type hippocampal slices reproduces the electrophysiological phenotype of porin-deficient mice. These results demonstrate a dynamic functional role for mitochondrial porins and the permeability transition pore in learning and synaptic plasticity.  相似文献   

17.
Mitochondria are essential organelles of eukaryotic cells. Inheritance and maintenance of mitochondrial structure depend on cytoskeleton-mediated organelle transport and continuous membrane fusion and fission events. However, in Saccharomyces cerevisiae most of the known components involved in these processes are encoded by genes that are not essential for viability. Here we asked which essential genes are required for mitochondrial distribution and morphology. To address this question, we performed a systematic screen of a yeast strain collection harboring essential genes under control of a regulatable promoter. This library contains 768 yeast mutants and covers approximately two thirds of all essential yeast genes. A total of 119 essential genes were found to be required for maintenance of mitochondrial morphology. Among these, genes were highly enriched that encode proteins involved in ergosterol biosynthesis, mitochondrial protein import, actin-dependent transport processes, vesicular trafficking, and ubiquitin/26S proteasome-dependent protein degradation. We conclude that these cellular pathways play an important role in mitochondrial morphogenesis and inheritance.  相似文献   

18.
In most eucaryote cells, release of apoptotic proteins from mitochondria involves fission of the mitochondrial network and drastic remodelling of the cristae structures. The intramitochondrial dynamin OPA1, as a potential central actor of these processes, exists as eight isoforms resulting from the alternate splicing combinations of exons (Ex) 4, 4b and 5b, which functions remain undetermined. Here, we show that Ex4 that is conserved throughout evolution confers functions to OPA1 involved in the maintenance of the DeltaPsi(m) and in the fusion of the mitochondrial network. Conversely, Ex4b and Ex5b, which are vertebrate specific, define a function involved in cytochrome c release, an apoptotic process also restricted to vertebrates. The drastic changes of OPA1 variant abundance in different organs suggest that nuclear splicing can control mitochondrial dynamic fate and susceptibility to apoptosis and pathologies.  相似文献   

19.
20.
Many metabolic processes essential for plant viability take place in mitochondria. Therefore, mitochondrial function has to be carefully balanced in accordance with the developmental stage and metabolic requirements of the cell. One way to adapt organellar function is the alteration of protein composition. Since most mitochondrial proteins are nuclear encoded, fine-tuning of mitochondrial protein content could be achieved by the regulation of protein translocation. Here we present evidence that the import of nuclear-encoded mitochondrial proteins into plant mitochondria is influenced by calcium and calmodulin. In pea mitochondria, the calmodulin inhibitor ophiobolin A as well as the calcium ionophores A23187 and ionomycin inhibit translocation of nuclear-encoded proteins in a concentration-dependent manner, an effect that can be countered by the addition of external calmodulin or calcium, respectively. Inhibition was observed exclusively for proteins translocating into or across the inner membrane but not for proteins residing in the outer membrane or the intermembrane space. Ophiobolin A and the calcium ionophores further inhibit translocation into mitochondria with disrupted outer membranes, but their effect is not mediated via a change in the membrane potential across the inner mitochondrial membrane. Together, our results suggest that calcium/calmodulin influences the import of a subset of mitochondrial proteins at the inner membrane. Interestingly, we could not observe any influence of ophiobolin A or the calcium ionophores on protein translocation into mitochondria of yeast, indicating that the effect of calcium/calmodulin on mitochondrial protein import might be a plant-specific trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号