首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terminally misfolded or unassembled proteins are degraded by the cytoplasmic ubiquitin-proteasome pathway in a process known as ERAD (endoplasmic reticulum-associated protein degradation). Overexpression of ER alpha1,2-mannosidase I and EDEMs target misfolded glycoproteins for ERAD, most likely due to trimming of N-glycans. Here we demonstrate that overexpression of Golgi alpha1,2-mannosidase IA, IB, and IC also accelerates ERAD of terminally misfolded human alpha1-antitrypsin variant null (Hong Kong) (NHK), and mannose trimming from the N-glycans on NHK in 293 cells. Although transfected NHK is primarily localized in the ER, some NHK also co-localizes with Golgi markers, suggesting that mannose trimming by Golgi alpha1,2-mannosidases can also contribute to NHK degradation.  相似文献   

2.
Endoplasmic reticulum (ER) class I alpha1,2-mannosidase (also known as ER alpha-mannosidase I) is a critical enzyme in the maturation of N-linked oligosaccharides and ER-associated degradation. Trimming of a single mannose residue acts as a signal to target misfolded glycoproteins for degradation by the proteasome. Crystal structures of the catalytic domain of human ER class I alpha1,2-mannosidase have been determined both in the presence and absence of the potent inhibitors kifunensine and 1-deoxymannojirimycin. Both inhibitors bind to the protein at the bottom of the active-site cavity, with the essential calcium ion coordinating the O-2' and O-3' hydroxyls and stabilizing the six-membered rings of both inhibitors in a (1)C(4) conformation. This is the first direct evidence of the role of the calcium ion. The lack of major conformational changes upon inhibitor binding and structural comparisons with the yeast alpha1, 2-mannosidase enzyme-product complex suggest that this class of inverting enzymes has a novel catalytic mechanism. The structures also provide insight into the specificity of this class of enzymes and provide a blueprint for the future design of novel inhibitors that prevent degradation of misfolded proteins in genetic diseases.  相似文献   

3.
Quality control in the endoplasmic reticulum ensures that only properly folded proteins are retained in the cell through mechanisms that recognize and discard misfolded or unassembled proteins in a process called endoplasmic reticulum-associated degradation (ERAD). We previously cloned EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and showed that it accelerates ERAD of misfolded glycoproteins. We now cloned mouse EDEM3, a soluble homolog of EDEM. EDEM3 consists of 931 amino acids and has all the signature motifs of Class I alpha-mannosidases (glycosyl hydrolase family 47) in its N-terminal domain and a protease-associated motif in its C-terminal region. EDEM3 accelerates glycoprotein ERAD in transfected HEK293 cells, as shown by increased degradation of misfolded alpha1-antitrypsin variant (null (Hong Kong)) and of TCRalpha. Overexpression of EDEM3 also greatly stimulates mannose trimming not only from misfolded alpha1-AT null (Hong Kong) but also from total glycoproteins, in contrast to EDEM, which has no apparent alpha1,2-mannosidase activity. Furthermore, overexpression of the E147Q EDEM3 mutant, which has the mutation in one of the conserved acidic residues essential for enzyme activity of alpha1,2-mannosidases, abolishes the stimulation of mannose trimming and greatly decreases the stimulation of ERAD by EDEM3. These results show that EDEM3 has alpha1,2-mannosidase activity in vivo, suggesting that the mechanism whereby EDEM3 accelerates glycoprotein ERAD is different from that of EDEM.  相似文献   

4.
Herscovics A 《Biochimie》2001,83(8):757-762
Class I alpha 1,2-mannosidases (glycosylhydrolase family 47) are conserved through eukaryotic evolution. This protein family comprises three subgroups distinguished by their enzymatic properties. The first subgroup includes yeast (Saccharomyces cerevisiae) and human alpha 1,2-mannosidases of the endoplasmic reticulum that primarily form Man(8)GlcNAc(2) isomer B from Man(9)GlcNAc(2). The second subgroup includes mammalian Golgi alpha 1,2-mannosidases, as well as enzymes from insect cells and from filamentous fungi, that trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomers A and/or C intermediates toward the formation of Man(5)GlcNAc(2). Yeast and mammalian proteins of the third subgroup have no enzyme activity with Man(9)GlcNAc(2) as substrate. The members of subgroups 1 and 3 participate in endoplasmic reticulum quality control and promote proteasomal degradation of misfolded glycoproteins. The yeast endoplasmic reticulum alpha 1,2-mannosidase has served as a model for structure-function studies of this family. Its structure was determined by X-ray crystallography as an enzyme-product complex. It consists of a novel (alpha alpha)(7) barrel containing the active site that includes essential acidic residues and calcium. The structures of the subgroup 1 human endoplasmic reticulum alpha 1,2-mannosidase and of a subgroup 2 fungal alpha 1,2-mannosidase were determined by molecular replacement. Comparison of the enzyme structures is providing some insight into the reasons for their different specificities.  相似文献   

5.
The endoplasmic reticulum (ER) has a strict protein quality control system. Misfolded proteins generated in the ER are degraded by the ER-associated degradation (ERAD). Yeast Mnl1p consists of an N-terminal mannosidase homology domain and a less conserved C-terminal domain and facilitates the ERAD of glycoproteins. We found that Mnl1p is an ER luminal protein with a cleavable signal sequence and stably interacts with a protein-disulfide isomerase (PDI). Analyses of a series of Mnl1p mutants revealed that interactions between the C-terminal domain of Mnl1p and PDI, which include an intermolecular disulfide bond, are essential for subsequent introduction of a disulfide bond into the mannosidase homology domain of Mnl1p by PDI. This disulfide bond is essential for the ERAD activity of Mnl1p and in turn stabilizes the prolonged association of PDI with Mnl1p. Close interdependence between Mnl1p and PDI suggests that these two proteins form a functional unit in the ERAD pathway.The endoplasmic reticulum (ER)2 is the first organelle in the secretory pathway of eukaryotic cells and provides an optimum environment for maturation of newly synthesized secretory and membrane proteins. Protein folding/assembly in the ER is aided by molecular chaperones and folding enzymes. Molecular chaperones in the ER assist folding of newly synthesized proteins and prevent them from premature misfolding and/or aggregate formation (1, 2). Protein folding in the ER is often associated with formation of disulfide bonds, which contribute to stabilization of native, functional states of proteins. Disulfide bond formation could be a rate-limiting step of protein folding both in vitro and in vivo (3, 4), and the ER has a set of folding enzymes including protein-disulfide isomerase (PDI) and its homologs that catalyze disulfide bond formation (5, 6).In parallel, protein folding/assembly in the ER relies on the inherent failsafe mechanism, i.e. the ER quality control system, to ensure that only correctly folded and/or assembled proteins can exit the ER. Misfolded or aberrant proteins are retained in the ER for refolding by ER-resident chaperones, whereas terminally misfolded proteins are degraded by the mechanism known as ER-associated degradation (ERAD). The ERAD consists of recognition and processing of aberrant substrate proteins, retrotranslocation across the ER membrane, and subsequent proteasome-dependent degradation in the cytosol. More than 20 different components have been identified to be involved in this process in yeast and mammals (7).The majority of proteins synthesized in the ER are glycoproteins, in which N-linked glycans are not only important for folding but also crucial for their ERAD if they fail in folding. Specifically, trimming of one or more mannose residues of Man9GlcNAc2 oligosaccharide and recognition of the modified mannose moiety represent a key step for selection of terminally misfolded proteins for disposal (8). A mannosidase I-like protein, Mnl1p/Htm1p (yeast), and EDEM (mammals, ER degradation enhancing α-mannosidase-like protein) were identified as candidates for lectins that recognize ERAD substrates with modified mannose moieties (911). Both Mnl1p and EDEM contain an N-terminal mannosidase homology domain (MHD), which lacks cysteine residues conserved among α1,2-mannosidase family members and is proposed to function in recognition of mannose-trimmed carbohydrate chains (supplemental Fig. S1). However, whether Mnl1p or EDEM indeed functions as an ERAD-substrate-binding lectin or has a mannosidase activity is still in debate (1115), and Yos9p was suggested to take the role of ERAD-substrate binding lectin (14, 1618). Mnl1p, but not EDEM, has a large C-terminal extension, which does not show any homology to known functional domains and is conserved only among fungal Mnl1p homologs (supplemental Fig. S1).After recognition of the modified mannose signal for degradation, aberrant proteins are maintained or converted to be retrotranslocation competent by ER chaperones including BiP (19). PDI was also indicated to be involved in these steps in the ERAD by, for example, its possible chaperone-like functions (2023). The yeast PDI, Pdi1p, contains four thioredoxin-like domains, two of which have a CGHC motif as active sites, followed by a C-terminal extension containing the ER retention signal. During its catalytic cycle, PDI transiently forms a mixed disulfide intermediate with its substrate through an intermolecular disulfide bond between the cysteine residues of the active site of PDI and the substrate molecule.Here we report identification of PDI as an Mnl1p-interacting protein. Stable interactions between the C-terminal domain of Mnl1p and PDI involve intermolecular disulfide bonds. Stably interacting PDI is required for formation of the functionally essential intramolecular disulfide bond in the MHD of Mnl1p, which in turn stabilizes and prolongs the Mnl1p-PDI interactions. Possible roles for those stable interactions between Mnl1p and PDI in the ERAD will be discussed.  相似文献   

6.
The quality control mechanism in the endoplasmic reticulum (ER) discriminates correctly folded proteins from misfolded polypeptides and determines their fate. Terminally misfolded proteins are retrotranslocated from the ER and degraded by cytoplasmic proteasomes, a mechanism known as ER-associated degradation (ERAD). We report the cDNA cloning of Edem, a mouse gene encoding a putative type II ER transmembrane protein. Expression of Edem mRNA was induced by various types of ER stress. Although the luminal region of ER degradation enhancing alpha-mannosidase-like protein (EDEM) is similar to class I alpha1,2-mannosidases involved in N-glycan processing, EDEM did not have enzymatic activity. Overexpression of EDEM in human embryonic kidney 293 cells accelerated the degradation of misfolded alpha1-antitrypsin, and EDEM bound to this misfolded glycoprotein. The results suggest that EDEM is directly involved in ERAD, and targets misfolded glycoproteins for degradation in an N-glycan dependent manner.  相似文献   

7.
The endoplasmic reticulum (ER) maintains an environment essential for secretory protein folding. Consequently, the premature transport of polypeptides would be harmful to the cell. To avert this scenario, mechanisms collectively termed "ER quality control" prevent the transport of nascent polypeptides until they properly fold. Irreversibly misfolded molecules are sorted for disposal by the ER-associated degradation (ERAD) pathway. To better understand the relationship between quality control and ERAD, we studied a new misfolded variant of carboxypeptidase Y (CPY). The molecule was recognized and retained by ER quality control but failed to enter the ERAD pathway. Systematic analysis revealed that a single, specific N-linked glycan of CPY was required for sorting into the pathway. The determinant is dependent on the putative lectin-like receptor Htm1/Mnl1p. The discovery of a similar signal in misfolded proteinase A supported the generality of the mechanism. These studies show that specific signals embedded in glycoproteins can direct their degradation if they fail to fold.  相似文献   

8.
It has been postulated that creation of Man8GlcNAc2 isomer B (M8B) by endoplasmic reticulum (ER) alpha-mannosidase I constitutes a signal for driving irreparably misfolded glycoproteins to proteasomal degradation. Contrary to a previous report, we were able to detect in vivo (but not in vitro) an extremely feeble ER alpha-mannosidase activity in Schizosaccharomyces pombe. The enzyme yielded M8B on degradation of Man9GlcNAc2 and was inhibited by kifunensin. Live S. pombe cells showed an extremely limited capacity to demannosylate Man9GlcNAc2 present in misfolded glycoproteins even after a long residence in the ER. In addition, no preferential degradation of M8B-bearing species was detected. Nevertheless, disruption of the alpha-mannosidase encoding gene almost totally prevented degradation of a misfolded glycoprotein. This and other conflicting reports may be best explained by assuming that the role of ER mannosidase on glycoprotein degradation is independent of its enzymatic activity. The enzyme, behaving as a lectin binding polymannose glycans of varied structures, would belong together with its enzymatically inactive homologue Htm1p/Mnl1p/EDEM, to a transport chain responsible for delivering irreparably misfolded glycoproteins to proteasomes. Kifunensin and 1-deoxymannojirimycin, being mannose homologues, would behave as inhibitors of the ER mannosidase or/and Htm1p/Mnl1p/EDEM putative lectin properties.  相似文献   

9.
10.
In Saccharomyces cerevisiae, proteins with misfolded lumenal, membrane, and cytoplasmic domains are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L, -M, and -C, respectively. ERAD-L is N-glycan-dependent and is characterized by ER mannosidase (Mns1p) and ER mannosidase-like protein (Mnl1p), which generate Man(7)GlcNAc(2) (d1) N-glycans with non-reducing α1,6-mannosyl residues. Glycoproteins bearing this motif bind Yos9p and are dislocated into the cytoplasm and then deglycosylated by peptide N-glycanase (Png1p) to yield free oligosaccharides (fOS). Here, we examined yeast fOS metabolism as a function of cell growth in order to obtain quantitative and mechanistic insights into ERAD. We demonstrate that both Png1p-dependent generation of Man(7-10)GlcNAc(2) fOS and vacuolar α-mannosidase (Ams1p)-dependent fOS demannosylation to yield Man(1)GlcNAc(2) are strikingly up-regulated during post-diauxic growth which occurs when the culture medium is depleted of glucose. Gene deletions in the ams1Δ background revealed that, as anticipated, Mns1p and Mnl1p are required for efficient generation of the Man(7)GlcNAc(2) (d1) fOS, but for the first time, we demonstrate that small amounts of this fOS are generated in an Mnl1p-independent, Mns1p-dependent pathway and that a Man(8)GlcNAc(2) fOS that is known to bind Yos9p is generated in an Mnl1p-dependent, Mns1p-independent manner. This latter observation adds mechanistic insight into a recently described Mnl1p-dependent, Mns1p-independent ERAD pathway. Finally, we show that 50% of fOS generation is independent of ERAD-L, and because our data indicate that ERAD-M and ERAD-C contribute little to fOS levels, other important processes underlie fOS generation in S. cerevisiae.  相似文献   

11.
In the endoplasmic reticulum (ER), misfolded proteins are retrotranslocated to the cytosol and degraded by the proteasome in a process known as ER-associated degradation (ERAD). Early in this pathway, a proposed lumenal ER lectin, EDEM, recognizes misfolded glycoproteins in the ER, disengages the nascent molecules from the folding pathway, and facilitates their targeting for disposal. In humans there are a total of three EDEM homologs. The amino acid sequences of these proteins are different from other lectins but are closely related to the Class I mannosidases (family 47 glycosidases). In this study, we characterize one of the EDEM homologs from Homo sapiens, which we have termed EDEM2 (C20orf31). Using recombinantly generated EDEM2, no alpha-1,2 mannosidase activity was observed. In HEK293 cells, recombinant EDEM2 is localized to the ER where it can associate with misfolded alpha1-antitrypsin. Overexpression of EDEM2 accelerates the degradation of misfolded alpha1-antitrypsin, indicating that the protein is involved in ERAD.  相似文献   

12.
In eukaryotes, membrane and soluble proteins of the secretory pathway enter the endoplasmic reticulum (ER) after synthesis in an unfolded state. Directly after entry, most proteins are modified with glycans at suitable glycosylation sites and start to fold. A protein that cannot fold properly will be degraded in a process called ER associated degradation (ERAD). Failures in ERAD, either by loss of function or by premature degradation of proteins, are a cause of severe diseases. Therefore, the search for novel ERAD components to gain better insight in this process is of high importance. Carbohydrate trimming is a relevant process in ER quality control. In this work a novel putative yeast mannosidase encoded by the open reading frame YLR057W was identified and named Mnl2. Deletion of MNL2 diminished the degradation efficiency of misfolded CPY* in the absence of the cognate mannosidase Mnl1, indicating a specific role in ERAD.  相似文献   

13.
14.
Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.  相似文献   

15.
Suzuki T  Lennarz WJ 《Glycobiology》2002,12(12):803-811
When glycoproteins formed in the endoplasmic reticulum (ER) are misfolded, they are generally translocated into the cytosol for ubiquitination and are subsequently degraded by the proteasome. This system, the so-called ER-associated glycoprotein degradation, is important for eukaryotes to maintain the quality of glycoproteins generated in the ER. It has been established in yeast that several distinct proteins are involved in this translocation and degradation processes. Small glycopeptides formed in the ER are exported to the cytosol in a similar manner. This glycopeptide export system is conserved from yeast to mammalian cells, suggesting its basic biological significance for eukaryotic cells. These two export systems (for misfolded glycoproteins and glycopeptides) share some properties, such as a requirement for ATP and involvement of Sec61p, a central membrane protein presumably forming a dislocon channel for export of proteins. However, the machinery of glycopeptide export is poorly understood. In this study, various mutants known to have an effect on export/degradation of misfolded glycoproteins were examined for glycopeptide export activity with a newly established assay method. Surprisingly, most of the mutants were found not to exhibit a defect in glycopeptide export. The only gene that was found to be required on efficient export of both types of substrates was PMR1, the gene encoding the medial-Golgi Ca(2+)/Mn(2+)-ion pump. These results provide evidence that although the systems involved in export of misfolded glycoproteins and glycopeptides share some properties, they have exhibited distinct differences.  相似文献   

16.
Murine alpha1,2-mannosidase IB is a type II transmembrane protein localized to the Golgi apparatus where it is involved in the biogenesis of complex and hybrid N-glycans. This enzyme consists of a cytoplasmic tail, a transmembrane domain followed by a "stem" region and a large C-terminal catalytic domain. To analyze the determinants of targeting, we constructed various deletion mutants of murine alpha1,2-mannosidase IB as well as alpha1,2-mannosidase IB/yeast alpha1,2-mannosidase and alpha1,2-mannosidase IB/GFP chimeras and localized these proteins by fluorescence microscopy, when expressed transiently in COS7 cells. Replacing the catalytic domain of alpha1,2-mannosidase IB with that of the homologous yeast alpha1,2-mannosidase and deleting the "stem" region in this chimera had no effect on Golgi targeting, but caused increased cell surface localization. The N-terminal tagged protein lacking a catalytic domain was also localized to the Golgi. In the latter case, when the stem region was partially or completely removed, the protein was found in both the ER and the Golgi. A chimera consisting of the alpha1,2-mannosidase IB N-terminal region (cytoplasmic and transmembrane domains plus 10 amino acids of the "stem" region) and GFP was localized mainly to the Golgi. Deletion of 30 out of 35 amino acids in the cytoplasmic tail had no effect on Golgi localization. A GFP chimera lacking the entire cytoplasmic tail was found in both the ER and the Golgi. These results indicate that the transmembrane domain of alpha1,2-mannosidase IB is a major determinant of Golgi localization.  相似文献   

17.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a quality control system for newly synthesized proteins in the ER; nonfunctional proteins, which fail to form their correct folding state, are then degraded. The cytoplasmic peptide:N-glycanase is a deglycosylating enzyme that is involved in the ERAD and releases N-glycans from misfolded glycoproteins/glycopeptides. We have previously identified a mutant plant toxin protein, RTA (ricin A-chain nontoxic mutant), as the first in vivo Png1 (the cytoplasmic peptide:N-glycanase in Saccharomyces cerevisiae)-dependent ERAD substrate. Here, we report a new genetic device to assay the Png1-dependent ERAD pathway using the new model protein designated RTL (RTA-transmembrane-Leu2). Our extensive studies using different yeast mutants identified various factors involved in RTL degradation. The degradation of RTA/RTL was independent of functional Sec61 but was dependent on Der1. Interestingly, ER-mannosidase Mns1 was not involved in RTA degradation, but it was dependent on Htm1 (ERAD-related α-mannosidase in yeast) and Yos9 (a putative degradation lectin), indicating that mannose trimming by Mns1 is not essential for efficient ERAD of RTA/RTL. The newly established RTL assay will allow us to gain further insight into the mechanisms involved in the Png1-dependent ERAD-L pathway.  相似文献   

18.
Proteins expressed in the endoplasmic reticulum (ER) are covalently modified by co-translational addition of pre-assembled core glycans (glucose(3)-mannose(9)-N-acetylglucosamine(2)) to asparagines in Asn-X-Ser/Thr motifs. N-Glycan processing is essential for protein quality control in the ER. Cleavages and re-additions of the innermost glucose residue prolong folding attempts in the calnexin cycle. Progressive loss of mannoses is a symptom of long retention in the ER and elicits preparation of terminally misfolded polypeptides for dislocation into the cytosol and proteasome-mediated degradation. The ER stress-induced protein EDEM1 regulates disposal of folding-defective glycoproteins and has been described as a mannose-binding lectin. Here we show that elevation of the intralumenal concentration of EDEM1 accelerates ER-associated degradation (ERAD) by accelerating de-mannosylation of terminally misfolded glycoproteins and by inhibiting formation of covalent aggregates upon release of terminally misfolded ERAD candidates from calnexin. Acceleration of Man(9) or Man(5)N-glycans dismantling upon overexpression was fully blocked by substitution in EDEM1 of one catalytic residue conserved amongst alpha1,2-mannosidases, thus suggesting that EDEM1 is an active mannosidase. This mutation did not affect the chaperone function of EDEM1.  相似文献   

19.
The yeast alpha1,2-mannosidase Mns1p is involved in N-linked oligosaccharide processing in Saccharomyces cerevisiae by converting Man9GlcNAc2 to a single isomer of Man8GlcNAc2. alpha1,2-Mannosidase is a 63 kDa type II resident membrane protein of the endoplasmic reticulum that has none of the known endoplasmic reticulum localization signals (HDEL/KDEL, KKXX, or RRXX). Using antibodies against recombinant alpha1,2-mannosidase, indirect immunofluorescence showed that alpha1,2-mannosidase localization is abnormal in rer1 cells and that the alpha1,2-mannosidase localizes in the vacuoles of rer1/deltapep4 cells whereas in wild-type and deltapep4 cells it is found in the endoplasmic reticulum. 35S-labeled cell extracts were subjected to double immunoprecipitation, first with antibodies to alpha1,2-mannosidase, then with either alpha1,2-mannosidase antibodies or antibodies to alpha1,6-mannose residues added in the Golgi. The labeled proteins were examined by autoradiography after sodium dodecyl sulfate polyacrylamide gel electrophoresis. A significant proportion of the labeled alpha1,2-mannosidase was immunoprecipitated by alpha1,6-mannose antibodies in wild-type, deltapep4 and rer1/deltapep4 cells with endogenous levels of alpha1,2-mannosidase, and in wild-type, deltapep4, rer1 and rer1/deltapep4 cells overexpressing alpha1,2-mannosidase. The alpha1,2-mannosidase of rer1/deltapep4 cells had a slower mobility on the gels than alpha1,2-mannosidase precipitated from wild-type or deltapep4 cells, indicating increased glycosylation due to transport through the Golgi to the vacuoles. It is concluded that the endoplasmic reticulum localization of alpha1,2-mannosidase in wild-type cells depends on Rer1p for retrieval from an early Golgi compartment.  相似文献   

20.
Proteins that are unfolded or misfolded in the endoplasmic reticulum (ER) must be refolded or degraded to maintain the homeostasis of the ER. Components of both productive folding and ER-associated degradation (ERAD) mechanisms are known to be up-regulated by the unfolded protein response (UPR). We describe two novel components of mammalian ERAD, Derlin-2 and -3, which show weak homology to Der1p, a transmembrane protein involved in yeast ERAD. Both Derlin-2 and -3 are up-regulated by the UPR, and at least Derlin-2 is a target of the IRE1 branch of the response, which is known to up-regulate ER degradation enhancing alpha-mannosidase-like protein (EDEM) and EDEM2, receptor-like molecules for misfolded glycoprotein. Overexpression of Derlin-2 or -3 accelerated degradation of misfolded glycoprotein, whereas their knockdown blocked degradation. Derlin-2 and -3 are associated with EDEM and p97, a cytosolic ATPase responsible for extraction of ERAD substrates. These findings indicate that Derlin-2 and -3 provide the missing link between EDEM and p97 in the process of degrading misfolded glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号