首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site specific spectroscopic techniques and differential scanning calorimetry were used to study human serum albumin (HSA) in the absence and in the presence of membranes composed of dipalmitoylphosphatidylcholine (DPPC) and poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Electron spin resonance (ESR) of a maleimide spin-label (5-MSL) covalently bound to the free sulfhydryl group at the unique cystein Cys-34 in domain I, intrinsic fluorescence of the single tryptophan Trp-214 in domain II, and extrinsic fluorescence of p-nitrophenyl anthranilate conjugated with tyrosine Tyr-411 in domain III were employed to study HSA dispersions with or without polymer-grafted membranes. On adsorbing at the DPPC membrane surfaces, domain I assumes a more loosened conformation and partitioning of the spin-labelled protein between the aqueous phase and the interfacial region of lipid membranes is observed by ESR. Domain II and III undergo a local structural arrangement which leads Trp-214 and Tyr-411 to come closer and causes intrinsic fluorescence quenching. The influence of DPPC bilayers on HSA is characterized both by a decrease of the thermal unfolding enthalpy and by a slight increase of the transition temperature, T (t), of the protein. The lipid induced effects on HSA are progressively reduced on increasing the amounts of PEG:2000-DPPE mixed with DPPC from the mushroom regime to the brush regime. Primary protein adsorption at the lipid surfaces is abolished at 1 mol% of the polymer-lipid, whereas the secondary protein adsorption at the polymer-brush leads to a further increase of both transition enthalpy and T (t) relative to the case of aqueous dispersions of HSA alone.  相似文献   

2.
The partition of cis-parinaric acid (9,11,13,15-cis, trans, trans,cis-octadecatetraenoic acid, cis-PnA) and trans-parinaric acid (9,11,13,15-all-trans-octadecatetraenoic acid, trans-PnA) among aqueous, solid lipid, and fluid lipid phases has been measured by three spectroscopic parameters: absorption spectral shifts, fluorescence quantum yield, and fluorescence polarization. The solid lipid was dipalmitoylphosphatidylcholine (DPPC); the fluid lipid was palmitoyldocosahexaenoylphosphatidylcholine (PDPC). Mole fraction partition coefficients between lipid and water were determined by absorption spectroscopy to be for ci--PnA, 5.3 X 10(5) with a solid lipid and 9 X 10(5) with fluid lipid and, for trans-PnA, 5 X 10(6) with solid lipid and 1.7 X 10(6) with fluid lipid. Ratios of the solid to the fluid partition coefficients (Kps/f) are 0.6 +/- 0.2 for cis-PnA and 3 +/- 1 for trans-PnA. A phase diagram for codispersions of DPPC and PDPC has been constructed from the measurements of the temperature dependence of the fluorescence quantum yield and polarization of cis-PnA and trans-PnA and their methyl ester derivatives. A simple analysis based on the phase diagram and fluorescence data allows additional calculations of Kps/f's which are determined to be 0.7 +/- 0.2 for the cis probes and 4 +/- 1 for the trans probes. The relative preference of trans-PnA for solid phase lipids and its enhanced quantum yield in solid phase lipids make it sensitive to a few percent solid. The trans probes provide evidence that structural order may persist in dispersions of these phospholipids 10 degrees C or more above their transition temperature. It is concluded that measurements of PnA fluorescence polarization vs. temperature are better suited than measurements of quantum yield vs. temperature for determining phospholipid phase separation.  相似文献   

3.
Phospholipase A(2) (PLA(2)) is an interfacially active enzyme whose hydrolytic activity is known to be enhanced in one-component phospholipid bilayer substrates exhibiting dynamic micro-heterogeneity. In this study the activity of PLA(2) towards large unilamellar vesicles composed of DPPC:SMPC and DMPC:DSPC:SMPC is investigated using fluorescence and HPLC techniques. Phase diagrams of the mixtures are established by differential scanning calorimetry and the PLA(2) activity, monitored by the lag time, is correlated with the phase behavior of the mixtures. In addition, the degree of lipid hydrolysis in the DMPC:DSPC:SMPC lipid mixtures is detected by HPLC. The PLA(2) activity is found to be significantly increased in the temperature range of the coexistence region where the lipid mixtures exhibit lateral gel-fluid phase separation. Furthermore, in the entire temperature range it is demonstrated that PLA(2) preferentially hydrolyzes the short chain DMPC lipid. This discriminative effect becomes less pronounced when the asymmetric lipid SMPC is present in the lipid substrate. Inclusion of SMPC into either DPPC or DMPC:DSPC vesicles prolongs the lag time. The results clearly show that the PLA(2) activity is significantly enhanced by lipid bilayer micro-heterogeneity in both one-component and multi-component lipid bilayer substrates. The PLA(2) activity measurements are discussed in terms of dynamic gel-fluid lipid domain formation due to density fluctuations and static lipid domain formation due to gel-fluid phase separation.  相似文献   

4.
Perturbations induced by ethylazinphos on the physical organization of dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol membranes were studied by differential scanning calorimetry (DSC) and fluorescence polarization of 2-, 6-, 12-(9-anthroyloxy) stearic acids and 16-(9-anthroyloxy) palmitic acid. Ethylazinphos (50 and 100 microM) increases the fluorescence polarization of the probes, either in the gel or in the fluid phase of DPPC bilayers, and this concentration dependent effect decreases from the surface to the bilayer core. Additionally, the insecticide displaces the phase transition to a lower temperature range and broadens the transition profile of DPPC. A shifting and broadening of the phase transition is also observed by DSC. Furthermore at insecticide/lipid molar ratios higher than 1/7, DSC thermograms, in addition to the normal transition centered at 41 degrees C, also display a new phase transition centered at 45.5 degrees C. The enthalpy of this new transition increases with insecticide concentration, with a corresponding decrease of the main transition enthalpy. Ethylazinphos in DPPC bilayers with low cholesterol (< or = 20 mol%) perturbs the membrane organization as described above for pure DPPC. However, cholesterol concentrations higher than 20 mol% prevent insecticide interaction, as revealed by fluorescence polarization and DSC data. Apparently, cholesterol significantly modulates insecticide interaction by competition for similar distribution domains in the membrane. The present results strongly support our previous hypothesis that ethylazinphos locates in the cooperativity region, i.e. the region of C1-C9 atoms of the acyl chains, and extends to the lipid-water interface, where it increases lipid packing order sensed across all the thickness of the bilayer. Additionally, and, on the basis of DSC data, a lateral regionalization of ethylazinphos is here tentatively suggested.  相似文献   

5.
The interaction of the probe diS-C3-(5) with dipalmitoylphosphatidylcholine (DPPC) liposomes has been studied using fluorescence and differential scanning calorimetry (DSC). The partition coefficients (K) of the probe for the lipid and the aqueous phase (in terms of molar part units) were (1.20 +/- 0.4) X 10(6) at 45 degrees C and (0.50 +/- 0.07) X 10(6) at 23 and 36 degrees C. In terms of volume concentration units, these values correspond to Kp = (2.88 +/- 0.10) X 10(4) and Kp = (1.20 +/- 0.17) X 10(4), respectively. DSC thermograms were practically identical both for large unilamellar and multilamellar liposomes. The main transition peak remained practically unchanged over the entire range of the probe concentrations used. The pretransition could be observed up to maximal probe concentrations applied and it widened and shifted from 35.4 degrees C in pure DPPC to approximately 32 degrees C at a probe/lipid ratio of 0.027. These results suggest that in both quasicrystalline and liquid crystalline lipid bilayers the probe molecules are included in "defects" between structurally ordered microregions (microdomains or clusters). The dependence of the fluorescence response on the transmembrane potential in a suspension of unilamellar DPPC vesicles suggest that the equilibrium thermodynamic model is valid for liquid crystalline bilayers.  相似文献   

6.
Bovine thyroid peroxidase (TPO), an enzyme requiring lipids for demonstrating catalytic activity, was incorporated in liposomes made of pure phospholipids. The enzyme did not show high differences in activity when bilayer thickness was changed, but dipalmitoyl phosphatidyl choline (DPPC) seemed to be more appropiate for activity. The perturbation caused on lipid fluidity by enzyme incorporation was studied by differential scanning calorimetry (DSC) and fluorescence polarization of the apolar probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The complexes of TPO with dimyristoyl phosphatidyl choline (DMPC), DPPC, and distearoyl phosphatidyl choline (DSPC) bilayers showed transition temperatures (Tc) which were lower than the characteristic ones shown by liposomes with the respective phospholipids alone. The microsomal fraction from which TPO was extracted was in the fluid state at 37°C, the temperature at which thyroid peroxidase works ‘in vivo’. Since the effect of the protein in lowering the transition temperature of the phospholipids was so low, the contribution of phospholipids containing unsaturated fatty acids has to be essential for obtaining a fluid bilayer at body temperature.  相似文献   

7.
By using Fourier transform infrared (FT-IR) spectroscopy in combination with differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), ultrasound velocimetry, Laurdan fluorescence spectroscopy, fluorescence microscopy and atomic force microscopy (AFM), the temperature and pressure dependent phase behavior of the five-component anionic model raft lipid mixture DOPC/DOPG/DPPC/DPPG/cholesterol (20:5:45:5:25 mol%) was investigated. A temperature range from 5 to 65 °C and a pressure range up to 16 kbar were covered to establish the temperature-pressure phase diagram of this heterogeneous model biomembrane system. Incorporation of 10-20 mol% PG still leads to liquid-ordered (l(o))-liquid-disordered (l(d)) phase coexistence regions over a wide range of temperatures and pressures. Compared to the corresponding neutral model raft mixture (DOPC/DPPC/Chol 25:50:25 mol%), the p,T-phase diagram is - as expected and in accordance with the Gibbs phase rule - more complex, the phase sequence as a function of temperature and pressure is largely similar, however. This anionic heterogeneous model membrane system will serve as a more realistic model biomembrane system to study protein interactions with anionic lipid bilayers displaying liquid-disordered/liquid-ordered domain coexistence over a wide range of the temperature-pressure plane, thus allowing also studies of biologically relevant systems encountered under extreme environmental conditions.  相似文献   

8.
Resveratrol and piceatannol are plant-derived polyphenols possessing extremely wide range of biological activities such as cancer chemopreventive, cardio- and neuroprotective, antioxidant, anti-inflammatory, anticancer and lifespan extending properties. Despite great interest in these stilbenes, their interactions with lipid bilayers have not been extensively studied. In the present work, the interaction of both resveratrol and piceatannol with model membranes composed of phosphatidylcholine (DMPC and DPPC) was investigated by means of fluorescence spectroscopy, differential scanning calorimetry (DSC) and electron spin resonance spectroscopy (ESR). Generalized polarization of two fluorescent probes Laurdan and Prodan measured in pure lipid and lipid:stilbene mixtures revealed that resveratrol and piceatannol changed bilayer properties in both gel-like and liquid crystalline phase and interacted with lipid headgroup region of the membrane. These findings were corroborated by DSC experiments in which the stilbene-induced decrease of lipid melting temperature and transition cooperativity were recorded. Resveratrol and piceatannol restricted also the ESR-measured mobility of spin probes GluSIN18, 5DSA and 16DSA with nitroxide group localized at different depths. Since the most pronounced effect was exerted on the spin probe located near membrane surface, we concluded that also ESR results pointed to the preferential interaction of resveratrol and piceatannol with headgroup region of lipid bilayer.  相似文献   

9.
The interaction between the aqueous form of the myelin proteolipid apoprotein (PLA) and model membranes prepared with either synthetic dipalmitoylphosphatidyl choline (DPPC) or biological lipids extracted from bovine brain (BE) has been investigated by Fourier-Transform IR spectroscopy. IR spectra obtained with lyophilized samples of PLA demonstrated 2 main peaks (amide I and amide II) culminating at 1656 cm-1 and 1545 cm-1, which we assigned to helical conformation. When PLA was solvated in DPPC or BE membranes, both the amide I and amide II features remained located at 1655 cm-1 and 1545 cm-1, although their half-width significantly decreased, demonstrating that the lipid environment favoured alpha helix structures. However differences between both mixtures were detected by measuring the amide I and amide II half-widths as a function of the L:P molar ratio. Moreover, analysis of the 1545/1515 peak intensity ratio brought evidence of different localization and/or molecular arrangement of the protein segments containing tyrosine residues, depending on the lipid composition of the membrane. According to previously published models, these data suggest that recombinants prepared with PLA and BE multilayers better mimic the biological membrane than do DPPC-PLA mixtures.  相似文献   

10.
Trehalose and dry dipalmitoylphosphatidylcholine revisited   总被引:4,自引:0,他引:4  
Dry mixtures of sonicated vesicles of DPPC and trehalose which contained a maximum of 0.2 mol water/mol lipid were examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and freeze-fracture electron microscopy. Samples of dry DPPC and trehalose prepared from aqueous solution had a minimum Tm of 24 degrees C for the gel to liquid-crystalline transition provided that the vesicles were dried with trehalose while the lipid was in liquid-crystalline phase. This low transition is compared to a transition of 105-112 degrees C for dry pure DPPC and of 42 degrees C for hydrated pure DPPC. The present work is an extension of earlier work from this laboratory using both other lipids and other methods of preparation.  相似文献   

11.
B Babbitt  L Huang  E Freire 《Biochemistry》1984,23(17):3920-3926
The interactions of palmitoyl-alpha-bungarotoxin (PBGT) with dipalmitoylphosphatidylcholine (DPPC) bilayers have been studied by using high-sensitivity differential scanning calorimetry together with steady-state and time-resolved phosphorescence and fluorescence spectroscopy. The incorporation of PBGT into large single lamellar vesicles causes a decrease in the phospholipid phase transition temperature (Tm), a broadening of the heat capacity function, and a decrease in the enthalpy change associated with the phospholipid gel to liquid-crystalline transition. Analysis of the dependence of this decreased enthalpy change on the protein/lipid molar ratio indicates that each PBGT molecule exhibits a localized effect upon the bilayer, preventing approximately six lipid molecules from participating in the lipid phase transition. Additional calorimetric experiments indicate that binding to acetylcholine receptor enriched membranes causes a small increase in the Tm of the PBGT/DPPC vesicles. Steady-state fluorescence depolarization measurements employing 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the association of PBGT with the phospholipid bilayer decreases the apparent order of the bulk lipid below Tm while increasing the order above Tm. These results have been further supported by rotational mobility measurements of erythrosin-labeled PBGT associated with giant (about 2-micron) unilamellar vesicles composed of dielaidoylphosphatidylcholine or dioleoylphosphatidylcholine using the time-dependent decay of delayed fluorescence/phosphorescence emission anisotropy. Rotational correlation times in the submillisecond time scale (about 30 microseconds) indicate that the protein is highly mobile in the fluid phase and that below Tm the rotational mobility is only slightly restricted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The structure and thermal behavior of hydrated and lyophilized dipalmitoylphosphatidylcholine (DPPC) multilayers in the presence of trehalose were investigated by differential scanning calorimetry and X-ray diffraction methods. Trehalose enters the aqueous space between hydrated bilayers and increases the interbilayer separation (from 0.36 to 1.37 nm in the different DPPC phases at 1 M trehalose). It does not affect the lipid chain packing and also the slow isothermal conversion at 4 degrees C of the metastable L beta' phase into the equilibrium crystalline Lc phase. Addition of trehalose leads to a slight upward shift (about 1 degrees C at 1 M trehalose) of the three phase transitions (sub-, pre-, and main transition) in fully hydrated DPPC while their other properties (enthalpy, excess specific heat, and transition width) remain unchanged. The effect of trehalose on the thermal behavior of DPPC multilayers freeze-dried from an initially completely hydrated state is qualitatively similar to that of water. These data support the "water replacement" hypothesis about trehalose action. It is suggested that trehalose prevents the formation of direct interbilayer hydrogen bonds in states of low hydration.  相似文献   

13.
The pressure-dependent diffusion and partitioning of single lipid fluorophores in DMPC and DPPC monolayers were investigated with the use of a custom-made monolayer trough mounted on a combined fluorescence correlation spectroscopy (FCS) and wide-field microscopy setup. It is shown that lipid diffusion, which is essential for the function of biological membranes, is heavily influenced by the lateral pressure and phase of the lipid structure. Both of these may change dynamically during, e.g., protein adsorption and desorption processes. Using FCS, we measured lipid diffusion coefficients over a wide range of lateral pressures in DMPC monolayers and fitted them to a free-area model as well as the direct experimental observable mean molecular area. FCS measurements on DPPC monolayers were also performed below the onset of the phase transition (Π < 5 mN/m). At higher pressures, FCS was not applicable for measuring diffusion coefficients in DPPC monolayers. Single-molecule fluorescence microscopy and differential scanning calorimetry clearly showed that this was due to heterogeneous partitioning of the lipid fluorophores in condensed phases. The results were compared with dye partitioning in giant lipid vesicles. These findings are significant in relation to the application of lipid fluorophores to study diffusion in both model systems and biological systems.  相似文献   

14.
Monolayers, fluorescence polarization, differential scanning calorimetry and X-ray diffraction experiments have been carried out to examine the effect of the polypeptide antibiotic polymyxin B on the phase behaviour of dipalmitoylphosphatidylglycerol (DPPG) either pure or mixed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). It is shown that in both phosphatidylglycerol alone and phosphatidylglycerol/phosphatidylcholine mixtures, polymyxin B can induce either phase separation between lipid domains of various compositions or interdigitation of the acyl chains in the solid state, without segregation of the two lipids. Phase separation was observed by fluorescence and differential scanning calorimetry after addition of the antibiotic to vesicles composed of mixtures of DMPC and DPPG in conditions where polymyxin B did not saturate phosphatidylglycerol (DPPG to polymyxin B molar ratio, Ri, higher than 15). Phase separation was also observed in mixed monolayers of DPPC and of the 5:1 DPPG/polymyxin B complex, at high surface pressure. Acyl chain interdigitation was observed by X-ray diffraction in both 5:1 DPPG/polymyxin B mixtures and preformed 5:5:1 DMPC/DPPG/polymyxin B mixture, in which the antibiotic saturates phosphatidylglycerol (Ri 5). In both cases, raising the temperature gave rise to a complex double-peaked phase transition by differential scanning calorimetry, from the interdigitating phase to a normal L alpha lamellar phase. As it is known that polymyxin B does not interact with phosphatidylcholine, the data presented show that, when phosphatidylcholine and phosphatidylglycerol are mixed together, a phase perturbation such as acyl chain interdigitation, which normally affects only phosphatidylglycerol, is also felt by phosphatidylcholine.  相似文献   

15.
The interaction of alpha- and beta-endosulfan isomers with lipid bilayers was searched by differential scanning calorimetry (DSC) and fluorescence polarization of 2-, 6- and 12-(9-anthroyloxy) stearic acids (2-AS, 6-AS and 12-AS) and 16-(9-anthroyloxy) palmitic acid (16-AP). Both endosulfan isomers, at insecticide/lipid molar ratios ranging from 1/40 to 1/1, shift the phase transition midpoint to lower temperature values and broaden the transition profile of dipalmitoylphosphatidylcholine (DPPC) bilayers. At insecticide/lipid molar ratios of 1/40, the isomers fully abolish the bilayer pretransition. Conversely to beta-endosulfan, alpha-endosulfan promotes a new phase transition, centered at 35.4 degrees C, in addition to the main phase transition of DPPC. Therefore, the alpha-isomer may undergo a heterogeneous distribution in separate domains in the plane of the membrane, whereas the beta-isomer may undergo a homogeneous distribution. Fluorescence polarization data indicate that alpha-endosulfan increases the lipid structural order in the regions probed by 2-AS and decreases it in the regions probed by 6-AS, 12-AS and 16-AP. On the other hand, the beta-isomer produces disordering effects in the upper regions of the bilayers, probed by 2-AS, and ordering in deeper regions, probed by 6-AS, 12-AS and 16-AP, mainly in the gel phase. The incorporation of cholesterol into DPPC bilayers progressively decreases the effects of beta-isomer which are vanished at 20 mol% cholesterol. However, this and higher cholesterol concentrations did not prevent alpha-endosulfan membrane interaction, as revealed by DSC and fluorescence polarization. The distinct effects promoted by alpha- and beta-endosulfan are discussed in terms of molecular orientation and positioning within the bilayer. Apparently, the alpha-isomer preferentially locates closer to the phospholipid headgroups whereas the beta-isomer distributes in deeper domains of the bilayer.  相似文献   

16.
The effects of bovine alpha-lactalbumin on the thermotropic properties of dimyristoylphosphatidylcholine liposomes are studied by Raman spectroscopy, fluorescence polarization and differential scanning calorimetry. The Raman spectrum reveals the drastic effects of the protein on the phospholipid structure. The transition temperature shifts downwards and the inter- and intrachain order in the lipid matrix progressively diminish with increasing protein concentration. Up to a lipid to protein molar ratio R = 25, the bilayer structure however is maintained. From fluorescence polarization data we conclude that the protein restricts the mobility of the DPH probe. In view of the Raman results, the lower probe mobility obviously cannot be associated with a more rigid lipid matrix. Nevertheless the transition temperatures of the alpha-lactalbumin-phospholipid complex increases. DSC measurements give no decisive way out for this discrepancy. These results confirm that different types of lipid order are involved in lipid-protein interactions. Compared to the free protein, the alpha-helicity of the protein has increased in the complex.  相似文献   

17.
Perturbations induced by malathion, methylparathion and parathion on the physicochemical properties of dipalmitoylphosphatidylcholine (DPPC) were studied by fluorescence anisotropy of DPH and DPH-PA and by differential scanning calorimetry (DSC). Methylparathion and parathion (50 microM) increased the fluorescence anisotropy evaluated by DPH-PA and DPH, either in gel or in the fluid phase of DPPC bilayers, but mainly in the fluid phase. Parathion is more effective than methylparathion. On the other hand, malathion had almost no effect. All the three xenobiotics displaced the phase transition midpoint to lower temperature values and broadened the phase transition profile of DPPC, the effectiveness following the sequence: parathion>methylparathion>malathion. A shifting and broadening of the phase transition was also observed by DSC. Furthermore, at methylparathion/lipid molar ratio of 1/2 and at parathion/lipid molar ratio of 1/7, the DSC thermograms displayed a shoulder in the main peak, in the low temperature side, suggesting coexistence of phases. For higher ratios, the phase transition profile becomes sharp as the control transition, but the midpoint is shifted to the previous shoulder position. Conversely to methylparathion and parathion, malathion did not promote phase separation. The overall data from fluorescence anisotropy and calorimetry indicate that the degree of effect of the insecticides on the physicochemical membrane properties correlates with toxicity to mammals. Therefore, the in vivo effects of organophosphorus compounds may be in part related with their ability to perturb the phospholipid bilayer structure, whose integrity is essential for normal cell function.  相似文献   

18.
Poly-l-lysines (PLL) and poly-l-arginines (PLA) of different polymer chain lengths interact strongly with negatively charged phospholipid vesicles mainly due to their different electrical charges. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and their mixtures (1/1 mol/mol) with the respective phosphatidylcholines of equivalent chain length were chosen as model membrane systems that form at room temperature either the fluid Lα or the gel phase Lβ lipid bilayer membranes, respectively. Leakage experiments revealed that the fluid POPG membranes are more perturbed compared to the gel phase DPPG membranes upon peptide binding. Furthermore, it was found that pure PG membranes are more prone to release the vesicle contents as a result of pore formation than the lipid mixtures POPG/POPC and DPPG/DPPC. For the longer polymers (≥ 44 amino acids) maximal dye-release was observed when the molar ratio of the concentrations of amino acid residues to charged lipid molecules reached a value of RP = 0.5, i.e. when the outer membrane layer was theoretically entirely covered by the polymer. At ratios lower or higher than 0.5 leakage dropped significantly. Furthermore, PLL and PLA insertions and/or translocations through lipid membranes were analyzed by using FITC-labeled polymers by monitoring their fluorescence intensity upon membrane binding. Short PLL molecules and PLA molecules of all lengths seemed to translocate through both fluid and gel phase lipid bilayers. Comparison of the PLL and PLA fluorescence assay results showed that PLA interacts stronger with phospholipid membranes compared to PLL. Isothermal titration calorimetry (ITC) measurements were performed to give further insight into these mechanisms and to support the findings obtained by fluorescence assays. Cryo-transmission electron microscopy (cryo-TEM) was used to visualize changes in the vesicles' morphology after addition of the polypeptides.  相似文献   

19.
Differential scanning calorimetry (DSC), fluorescence polarization and X-ray diffraction were per-formed to investigate the kinetics of the micellar to the lamellar phase transition of dipalmitoylphosphatidylcholine/1-palmitoylphosphatidylcholine (16:0 LPC/DPPC) liposomes at gel phase. With a 16:0 LPC concentration up to 27 mol% only the sharp main transition with relatively high enthalpy (△H) values of DPPC was observed. Increasing 16 : 0 LPC concentration, the phase transition was broadened and the transition enthalpy was decreased and finally totally disappeared. The fluorescence probes of 3AS, 9AS, 12AS, and 16AP were employed, respectively, to detect the mo-bility of various sites of carbon chains of DPPC or 16:0 LPC/DPPC liposomes. It was shown that DPPC liposomes formed in the absence of 16:0 LPC always had a fluidity gradient in both gel and liquid-crystalline phase, while in the presence of 14.1 mol% and 27.0 mol% 16:0 LPC in the mixtures, the fluidity gradient tended to disappear below 40℃:  相似文献   

20.
Li L  Cheng JX 《Biochemistry》2006,45(39):11819-11826
We report a new type of gel-liquid phase segregation in giant unilamellar vesicles (GUVs) of mixed lipids. Coexisting patch- and stripe-shaped gel domains in GUV bilayers composed of DOPC/DPPC or DLPC/DPPC are observed by confocal fluorescence microscopy. The lipids in stripe domains are shown to be tilted according to the DiIC18 fluorescence intensity dependence on the excitation polarization. The patch domains are found to be mainly composed of DPPC-d62 according to the coherent anti-Stokes Raman scattering (CARS) images of DOPC/DPPC-d62 bilayers. When cooling GUVs from above the miscibility temperature, the patch domains start to appear between the chain melting and the pretransition temperature of DPPC. In GUVs containing a high molar percentage of DPPC, the stripe domains form below the pretransition temperature. Our observations suggest that the patch and stripe domains are in the Pbeta' and Lbeta' gel phases, respectively. According to the thermoelastic properties of GUVs described by Needham and Evans [(1988) Biochemistry 27, 8261-8269], the Pbeta' and Lbeta' phases are formed at relatively low and high membrane tensions, respectively. GUVs with high DPPC percentage have high membrane surface tension and thus mainly exhibit Lbeta' domains, while GUVs with low DPPC percentage have low membrane surface tension and form Pbeta' domains accordingly. Adding negatively charged lipid to the lipid mixtures or applying an osmotic pressure to GUVs using sucrose solutions releases the surface tension and leads to the disappearance of the Lbeta' gel phase. The relationship between the observed domains in free-standing GUV bilayers and those in supported bilayers is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号