首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absence of dystrophin and resultant disruption of the dystrophin glycoprotein complex renders skeletal muscles of dystrophic patients and dystrophic mdx mice susceptible to contraction-induced injury. Strategies to reduce contraction-induced injury are of critical importance, because this mode of damage contributes to the etiology of myofiber breakdown in the dystrophic pathology. Transgenic overexpression of insulin-like growth factor-I (IGF-I) causes myofiber hypertrophy, increases force production, and can improve the dystrophic pathology in mdx mice. In contrast, the predominant effect of continuous exogenous administration of IGF-I to mdx mice at a low dose (1.0-1.5 mg.kg(-1).day(-1)) is a shift in muscle phenotype from fast glycolytic toward a more oxidative, fatigue-resistant, slow muscle without alterations in myofiber cross-sectional area, muscle mass, or maximum force-producing capacity. We found that exogenous administration of IGF-I to mdx mice increased myofiber succinate dehydrogenase activity, shifted the overall myosin heavy chain isoform composition toward a slower phenotype, and, most importantly, reduced contraction-induced damage in tibialis anterior muscles. The deficit in force-producing capacity after two damaging lengthening contractions was reduced significantly in tibialis anterior muscles of IGF-I-treated (53 +/- 4%) compared with untreated mdx mice (70 +/- 5%, P < 0.05). The results provide further evidence that IGF-I administration can enhance the functional properties of dystrophic skeletal muscle and, compared with results in transgenic mice or virus-mediated overexpression, highlight the disparities in different models of endocrine factor delivery.  相似文献   

2.
Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy ((1)H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic (mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo (1)H MRS regarding skeletal muscle injury.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188) is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control). The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA) muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001). Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered.  相似文献   

4.
Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The absence of dystrophin induces an abnormal increase of sarcolemmal calcium influx through cationic channels in adult skeletal muscle fibers from dystrophic (mdx) mice. We observed that the activity of these channels was increased after depletion of the stores of calcium with thapsigargin or caffeine. By analogy with the situation observed in nonexcitable cells, we therefore hypothesized that these store-operated channels could belong to the transient receptor potential channel (TRPC) family. We measured the expression of TRPC isoforms in normal and mdx adult skeletal muscles fibers, and among the seven known isoforms, five were detected (TRPC1, 2, 3, 4, and 6) by RT-PCR. Western blot analysis and immunocytochemistry of normal and mdx muscle fibers demonstrated the localization of TRPC1, 4, and 6 proteins at the plasma membrane. Therefore, an antisense strategy was used to repress these TRPC isoforms. In parallel with the repression of the TRPCs, we observed that the occurrence of calcium leak channels was decreased to one tenth of its control value (patch-clamp technique), showing the involvement of TRPC in the abnormal calcium influx observed in dystrophic fibers.  相似文献   

5.
In the mdx mice, lack of dystrophin leads to increases in calcium influx and myonecrosis, followed by muscle regeneration. Synapse elimination is faster in mdx than in controls, suggesting that increases in calcium influx during development could be involved. In the present study, we evaluated whether dystrophic fibers display changes in permeability to Evans Blue Dye (EBD) during development of the neuromuscular junction. EBD is a sensitive label for the early detection of increased myofiber permeability and sarcolemmal damage. After intraperitoneal injection of EBD, sternomastoid (STN) and tibialis anterior (T. anterior) muscles were analyzed with fluorescence microscopy. At 01, 07 and 14 days of age, STN and TA mdx myofibers were not stained with EBD. At 21 days of age, positive labeling of TA and STN mdx myofibers was seen, suggesting permeability modification and myonecrosis. Adult muscles showed a decrease (T. anterior) or no changes (STN) in the amount of EBD-positive fibers. These results suggest that there is no sarcolemmal damage detected by EBD during development of dystrophic neuromuscular junctions and other factors may contribute to the earlier synapse elimination seen in dystrophic muscle.  相似文献   

6.
The purpose was to investigate the contribution of mechanical damage to sarcomeres to the greater susceptibility of dystrophic muscle fibers to contraction-induced injury. Single stretches provide an effective method for studying mechanical factors that contribute to the initiation of contraction-induced injury. We hypothesized that, after single stretches, the deficits in isometric force would be greater for muscles of mdx than C57BL/10 mice, whereas membrane damage would be minimal for all muscles. Extensor digitorum longus (EDL) and soleus muscles of mice were removed under anesthesia with Avertin (tribromoethanol). During the plateau of a maximum isometric contraction in vitro, muscles were stretched through single strains of 20-60% fiber length. Isometric force was remeasured 1 min later, and muscles were then incubated in procion orange dye to identify fibers with membrane damage. Force deficits at 1 min were two- to threefold greater for EDL muscles of mdx compared with C57BL/10 mice, whereas no significant differences were observed between soleus muscles of mdx and C57BL/10 mice. For all muscles, membrane damage was minimal and not significantly increased by single stretches for either strain of mice. These data support a critical role of dystrophin maintaining sarcomere stability in EDL muscles, whereas soleus muscles retain abilities, in the absence of dystrophin, not different from control muscles to resist sarcomere damage.  相似文献   

7.
We demonstrated that the susceptibility of skeletal muscle to injury from lengthening contractions in the dystrophin-deficient mdx mouse is directly linked with the extent of fiber branching within the muscles and that both parameters increase as the mdx animal ages. We subjected isolated extensor digitorum longus muscles to a lengthening contraction protocol of 15% strain and measured the resulting drop in force production (force deficit). We also examined the morphology of individual muscle fibers. In mdx mice 1–2 mo of age, 17% of muscle fibers were branched, and the force deficit of 7% was not significantly different from that of age-matched littermate controls. In mdx mice 6–7 mo of age, 89% of muscle fibers were branched, and the force deficit of 58% was significantly higher than the 25% force deficit of age-matched littermate controls. These data demonstrated an association between the extent of branching and the greater vulnerability to contraction-induced injury in the older fast-twitch dystrophic muscle. Our findings demonstrate that fiber branching may play a role in the pathogenesis of muscular dystrophy in mdx mice, and this could affect the interpretation of previous studies involving lengthening contractions in this animal. skeletal muscle; mdx mouse; lengthening contraction; Duchenne muscular dystrophy  相似文献   

8.
Mdx mice uniquely recover from degenerative dystrophic lesions by an intense myoproliferative (regenerative) response. To investigate a potential role of endogenous basic fibroblast growth factor (bFGF) in injury-repair processes, we investigated its localization in several striated muscles of mdx and control mice using immunofluorescence labeling with specific antibodies. Basic FGF was localized consistently to the myofiber periphery and nuclei of intact myofibers, as well as in single, dystrophin-positive cells in close association with the myofibers (potential myosatellite cells). In mdx mice, actively degenerating skeletal or cardiac muscle fibers presented intense cytoplasmic anti-bFGF staining prior to mononuclear infiltration. Small regenerating fibers in mdx skeletal muscle exhibited greater bFGF accumulation than adjacent larger myofibers. Strong nuclear anti-bFGF immunolabeling was frequently observed in mdx cardiac myocytes at the borders of necrotic regions. In agreement with differences in intensity of immunolabeling, extracts from slow-twitch muscles contained higher levels of bFGF compared to those from fast-twitch muscles, in both control and mdx mice. In addition, bFGF levels were consistently higher in extracts from all mdx tissues compared to those derived from their control counterparts. Our data suggest that bFGF participates in the degenerative and regenerative responses of striated muscle to dystrophic injury and also indicate a potential involvement of this factor with the physiology of different striated muscles.  相似文献   

9.
Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV) driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day) resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle.  相似文献   

10.
The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10-18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (-70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ~38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P < 0.001). Moreover, isolated extensor digitorum longus muscles excised from in vivo-tested hindlimbs 14-18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm(2), P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength.  相似文献   

11.
Duchenne muscular dystrophy is characterized by myofiber necrosis, muscle replacement by connective tissue, and crippling weakness. Although the mdx mouse also lacks dystrophin, most muscles show little myofiber loss or functional impairment. An exception is the mdx diaphragm, which is phenotypically similar to the human disease. Here we tested the hypothesis that the mdx diaphragm has a defective regenerative response to necrotic injury, which could account for its severe phenotype. Massive necrosis was induced in mdx and wild-type (C57BL10) mouse diaphragms in vivo by topical application of notexin, which destroys mature myofibers while leaving myogenic precursor satellite cells intact. At 4 h after acute exposure to notexin, >90% of diaphragm myofibers in both wild-type and mdx mice demonstrated pathological sarcolemmal leakiness, and there was a complete loss of isometric force-generating capacity. Both groups of mice showed strong expression of embryonic myosin within the diaphragm at 5 days, which was largely extinguished by 20 days after injury. At 60 days postinjury, wild-type diaphragms exhibited a persistent loss ( approximately 25%) of isometric force-generating capacity, associated with a trend toward increased connective tissue infiltration. In contrast, mdx diaphragms achieved complete functional recovery of force generation to noninjured values, and there was no increase in muscle connective tissue over baseline. These data argue against any loss of intrinsic regenerative capacity within the mdx diaphragm, despite characteristic features of major dystrophic pathology being present. Our findings support the concept that significant latent regenerative capacity resides within dystrophic muscles, which could potentially be exploited for therapeutic purposes.  相似文献   

12.
13.
Duchenne muscular dystrophy (DMD) is a fatal and crippling disease of skeletal muscle which displays increased fibre turnover and elevated levels of programmed cell death (PCD) in muscle stem cells. Previously we showed that this cell death is inhibited by the growth factor IGF-II. To determine the functional significance of PCD to the dystrophic phenotype, we used a transgene to over-express IGF-II in the mdx mouse. We found that ectopic expression of IGF-II inhibited the elevated PCD observed in skeletal muscles in the absence of functional dystrophin and significantly ameliorates the early gross histopathological changes in skeletal muscles characteristic of the dystrophic phenotype. Replacement of the dystrophin gene abolished abnormal skeletal muscle cell PCD levels in vivo in a dose-dependent manner and in dystrophic SMS cell lines cultured in vitro. Thus elevation of stem cell PCD in dystrophic skeletal muscle is a direct consequence of the loss of functional dystrophin. Together these data demonstrate that elevated skeletal muscle cell PCD is a critical component of dystrophic pathology and is inversely correlated with both dystrophin gene dosage and with muscle fibre pathology. Targeting PCD in dystrophic muscles reduces both PCD and the classical features of dystrophic pathology in the mdx mouse suggesting that IGF-II is a strong candidate for therapeutic intervention in the dystrophinopathies.  相似文献   

14.
Our purpose was to investigate the effect of velocity of stretch on contraction-induced injury to whole skeletal muscles. Single stretches provide an effective method for studying factors that initiate contraction-induced injury. We tested the null hypothesis that the severity of injury is not dependent on the velocity of the stretch. From the plateau of maximum isometric contractions, extensor digitorum longus muscles of mice were administered single stretches in situ of 30--50% strain relative to muscle fiber length (L(f)) at rates of 1--16 L(f)/s. The magnitude of injury was represented by the isometric force deficit 1--10 min after the stretch. Although the null hypothesis was not supported because the force deficit was affected by velocity (r(2) = 0.09), the effect was relatively weak and was not significant except at the largest strain. Velocity had no effect on peak or average force or work input, factors established to have significant relationships with the force deficit. Velocity may play a minor role in contraction-induced injury, but its importance is negligible relative to that of strain.  相似文献   

15.
Skeletal muscle nNOSμ (neuronal nitric oxide synthase mu) localizes to the sarcolemma through interaction with the dystrophin-associated glycoprotein (DAG) complex, where it synthesizes nitric oxide (NO). Disruption of the DAG complex occurs in dystrophinopathies and sarcoglycanopathies, two genetically distinct classes of muscular dystrophy characterized by progressive loss of muscle mass, muscle weakness and increased fatigability. DAG complex instability leads to mislocalization and downregulation of nNOSμ; but this is thought to play a minor role in disease pathogenesis. This view persists without knowledge of the role of nNOS in skeletal muscle contractile function in vivo and has influenced gene therapy approaches to dystrophinopathy, the majority of which do not restore sarcolemmal nNOSμ. We address this knowledge gap by evaluating skeletal muscle function in nNOS knockout (KN1) mice using an in situ approach, in which the muscle is maintained in its normal physiological environment. nNOS-deficiency caused reductions in skeletal muscle bulk and maximum tetanic force production in male mice only. Furthermore, nNOS-deficient muscles from both male and female mice exhibited increased susceptibility to contraction-induced fatigue. These data suggest that aberrant nNOSμ signaling can negatively impact three important clinical features of dystrophinopathies and sarcoglycanopathies: maintenance of muscle bulk, force generation and fatigability. Our study suggests that restoration of sarcolemmal nNOSμ expression in dystrophic muscles may be more important than previously appreciated and that it should be a feature of any fully effective gene therapy-based intervention.  相似文献   

16.
Skeletal muscle nNOSmu (neuronal nitric oxide synthase mu) localizes to the sarcolemma through interaction with the dystrophin-associated glycoprotein (DAG) complex, where it synthesizes nitric oxide (NO). Disruption of the DAG complex occurs in dystrophinopathies and sarcoglycanopathies, two genetically distinct classes of muscular dystrophy characterized by progressive loss of muscle mass, muscle weakness and increased fatigability. DAG complex instability leads to mislocalization and downregulation of nNOSmu; but this is thought to play a minor role in disease pathogenesis. This view persists without knowledge of the role of nNOS in skeletal muscle contractile function in vivo and has influenced gene therapy approaches to dystrophinopathy, the majority of which do not restore sarcolemmal nNOSmu. We address this knowledge gap by evaluating skeletal muscle function in nNOS knockout (KN1) mice using an in situ approach, in which the muscle is maintained in its normal physiological environment. nNOS-deficiency caused reductions in skeletal muscle bulk and maximum tetanic force production in male mice only. Furthermore, nNOS-deficient muscles from both male and female mice exhibited increased susceptibility to contraction-induced fatigue. These data suggest that aberrant nNOSmu signaling can negatively impact three important clinical features of dystrophinopathies and sarcoglycanopathies: maintenance of muscle bulk, force generation and fatigability. Our study suggests that restoration of sarcolemmal nNOSmu expression in dystrophic muscles may be more important than previously appreciated and that it should be a feature of any fully effective gene therapy-based intervention.  相似文献   

17.
18.
We tested the hypothesis that lengthening contractions and subsequent muscle fiber degeneration and/or regeneration are required to induce exercise-associated protection from lengthening contraction-induced muscle injury. Extensor digitorum longus muscles in anesthetized mice were exposed in situ to repeated lengthening contractions, isometric contractions, or passive stretches. Three days after lengthening contractions, maximum isometric force production was decreased by 55%, and muscle cross sections contained a significant percentage (18%) of injured fibers. Neither isometric contractions nor passive stretches induced a deficit in maximum isometric force or a significant number of injured fibers at 3 days. Two weeks after an initial bout of lengthening contractions, a second identical bout produced a force deficit (19%) and a percentage of injured fibers (5%) that was smaller than those for the initial bout. Isometric contractions and passive stretches also provided protection from lengthening contraction-induced injury 2 wk later (force deficits = 35 and 36%, percentage of injured fibers = 12 and 10%, respectively), although the protection was less than that provided by lengthening contractions. These data indicate that lengthening contractions and fiber degeneration and/or regeneration are not required to induce protection from lengthening contraction-induced injury.  相似文献   

19.
Phospholipid incorporation of 32P by primary myotube cultures and the tissue activity of sarcolemmal Na+/K(+)-transporting ATPase were studied to determine whether the absence of dystrophin from dystrophic (mdx) muscle would affect membrane lipid synthesis and membrane function. The incorporation of 32P by phospholipid as a ratio with total protein was greater in cultured dystrophic cells compared with control cells. The mdx cells also incorporated more 32P than control cells into phosphatidylethanolamine, which is thought to increase prior to myoblast fusion, and less into phosphatidylserine, phosphatidylinositol, and lysophosphatidylcholine. There was no difference in total protein content or [3H]leucine or 32P incorporation into the aqueous fraction of dystrophic and control cells, although dystrophic cells incorporated less [35S]methionine into protein than controls. Isolated sarcolemma from mdx skeletal muscle tissue demonstrated a consistently greater specific activity of ouabain-sensitive Na+/K(+)-transporting ATPase than sarcolemmal preparations from control skeletal muscle. These observations suggest that cytoskeletal changes such as dystrophin deficiency may alter the differentiation of membrane composition and function.  相似文献   

20.
Increased calcium influx in dystrophic muscle   总被引:16,自引:0,他引:16  
We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased efflux could lead to elevated [Ca2+]i levels. Calcium transient decay times were identical in normal and mdx fibers if resting [Ca2+]i levels were similar, suggesting that calcium-sequestering mechanisms are not altered in dystrophic muscle, but are slowed by the higher resting [Ca2+]i. The defect appears to be specific for calcium since resting free sodium levels and sodium influx rates in the absence of Na+/K(+)-ATPase activity were identical in normal and dystrophic cells when measured with sodium-binding benzofuran isophthalate. Calcium leak channels, whose opening probabilities (Po) were voltage independent, could be the major calcium influx pathway at rest. We have shown previously that calcium leak channel Po is significantly higher in dystrophic myotubes. These leak channels were selective for calcium over sodium under physiological conditions. Agents that increased leak channel activity also increased [Ca2+]i in fibers and myotubes. These results suggest that increased calcium influx, as a result of increased leak channel activity, could result in the elevated [Ca2+]i in dystrophic muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号