共查询到20条相似文献,搜索用时 0 毫秒
1.
Szkudelska K Nogowski L Szkudelski T 《The Journal of steroid biochemistry and molecular biology》2000,75(4-5):265-271
Genistein is a phytoestrogen found in several plants eaten by humans and food-producing animals and exerting a wide spectrum of biological activity. In this experiment, the impact of genistein on lipogenesis and lipolysis was studied in isolated rat adipocytes. Incubation of the cells (106 cells/ml in plastic tubes at 37°C with Krebs-Ringer buffer, 90 min) with genistein (0.01, 0.3, 0.6 and 1 mM) clearly restricted (1 nM) [U-14C]glucose conversion to total lipids in the absence and presence of insulin. When [14C]acetate was used as the substrate for lipogenesis, genistein (0.01, 0.1 and 1 mM) exerted a similar effect. Thus, the anti-lipogenetic action of genistein may be an effect not only of alteration in glucose transport and metabolism, but this phytoestrogen can also restrict the fatty acids synthesis and/or their estrification. Incubation of adipocytes with estradiol at the same concentrations also resulted in restriction of lipogenesis, but the effect was less marked. Genistein (0.1 and 1 mM) augmented basal lipolysis in adipocytes. This process was strongly restricted by insulin (1 μM) and H-89 (an inhibitor of protein kinase A; 50 μM) and seems to be primarily due to the inhibitory action of the phytoestrogen on cAMP phosphodiesterase in adipocytes. Genistein at the smallest concentration (0.01 mM) augmented epinephrine-stimulated (1 μM) lipolysis but failed to potentiate lipolysis induced by forskolin (1 μM) or dibutyryl-cAMP (1 mM). These results suggest genistein action on the lipolytic pathways before activation of adenylate cyclase. The restriction of lipolysis stimulated by several lipolytic agents – epinephrine, forskolin and dibutyryl-cAMP were observed when adipocytes were incubated with genistein at highest concentrations (0.1 and 1 mM). These results prove the inhibitory action of this phyestrogen on the final steps of the lipolytic cascade, i.e. on protein kinase A or hormone sensitive lipase. Estradiol, added to the incubation medium, did not affect lipolysis. It can be concluded that genistein significantly affects lipogenesis and lipolysis in isolated rat adipocytes. 相似文献
2.
The marked stimulatory effect of insulin on the metabolism of [U-14C]glucose to CO2, glyceride-glycerol, and fatty acid observed with adipocytes from normal New Zealand yellow (NZY) mice and young (nonobese) New Zealand obese (NZO) mice was greatly diminished in cells obtained from adult obese NZO mice. Adipocytes from obese NZO mice had lower basal rates of CO2 formation and fatty acid synthesis than cells from NZY or young NZO mice. Glyceride-glycerol was labeled to a similar extent under basal conditions in adipocytes from all three groups of mice, implying that the basal rate of glucose transport and the enzymes of the glycolytic pathway are intact in obese NZO adipocytes. Both basal and epinephrine-stimulated lipolysis were impaired in adipocytes from obese NZO mice when compared with cells from NZY and young NZO mice. Epinephrine-stimulated lipolysis was markedly less sensitive to the inhibitory effect of insulin in adipocytes from obese NZO mice than in NZY and young NZO controls. These studies suggest that adipocytes from young, nonobese NZO mice do not exhibit resistance to epinephrine and insulin, and that hormone resistance and decreased rates of metabolism accompany the onset and evolution of obesity. 相似文献
3.
Wedellová Z Dietrich J Siklová-Vítková M Kološtová K Kováčiková M Dušková M Brož J Vedral T Stich V Polák J 《Physiological research / Academia Scientiarum Bohemoslovaca》2011,60(1):139-148
Adiponectin is an adipokine increasing glucose and fatty acid metabolism and improving insulin sensitivity. The aim of this study was to investigate the role of adiponectin in the regulation of adipocyte lipolysis. Human adipocytes isolated from biopsies obtained during surgical operations from 16 non-obese and 17 obese subjects were incubated with 1) human adiponectin (20 microg/ml) or 2) 0.5 mM AICAR - activator of AMPK (adenosine monophosphate activated protein kinase). Following these incubations, isoprenaline was added (10(-6) M) to investigate the influence of adiponectin and AICAR on catecholamine-induced lipolysis. Glycerol concentration was measured as lipolysis marker. We observed that adiponectin suppressed spontaneous lipolysis by 21 % and isoprenaline-induced lipolysis by 14 % in non-obese subjects. These effects were not detectable in obese individuals, but statistically significant differences in the effect of adiponectin between obese and non-obese were not revealed by two way ANOVA test. The inhibitory effect of AICAR and adiponectin on lipolysis was reversed by Compound C. Our results suggest, that adiponectin in physiological concentrations inhibits spontaneous as well as catecholamine-induced lipolysis. This effect might be lower in obese individuals and this regulation seems to involve AMPK. 相似文献
4.
A method for the preparation of isolated adipocytes from obese mice is described. Similar yields of adipocytes (50--60%), as judged by several criteria, are obtained from obese mice and lean controls. Few fat-globules and no free nuclei were observed in cell preparations, which are metabolically active, respond to hormonal control and appear to be representative of intact adipose tissue. Noradrenaline-stimulated lipolysis was inhibited by insulin, equally in adipocytes from lean and obese mice. Inhibition in obese cells required exogenous glucose, and the insulin dose--response curve was shifted to the right. Basal lipogenesis from glucose was higher in adipocytes from obese mice, and the stimulatory effect of insulin was greater in cells from obese mice compared with lean controls. A rightward shift in the insulin dose--response curve was again observed with cells from obese animals. This suggests that adipose tissue from obese mice is insulin-sensitive at the high blood insulin concentrations found in vivo. The resistance of obese mice to the hypoglycaemic effect of exogenous insulin and their impaired tolerance to glucose loading appear to be associated with an impaired insulin response by muscle rather than by adipose tissue. 相似文献
5.
Pulido MR Diaz-Ruiz A Jiménez-Gómez Y Garcia-Navarro S Gracia-Navarro F Tinahones F López-Miranda J Frühbeck G Vázquez-Martínez R Malagón MM 《PloS one》2011,6(7):e22931
Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed. 相似文献
6.
Targets for TNF-alpha-induced lipolysis in human adipocytes 总被引:3,自引:0,他引:3
Rydén M Arvidsson E Blomqvist L Perbeck L Dicker A Arner P 《Biochemical and biophysical research communications》2004,318(1):168-175
BACKGROUND: Tumor necrosis factor-alpha (TNF-alpha)-induced lipolysis may be important for insulin resistance in both obesity and cachexia. In rodent cells TNF-alpha enhances lipolysis through down-regulation of the expression of the membrane proteins Galpha(i) and the lipid droplet-associated protein perilipin (PLIN). In human (but not murine) adipocytes TNF-alpha stimulates lipolysis through the mitogen activated protein kinases (MAPKs) p44/42 and JNK although it is unclear whether this is mediated via PLIN and/or Galpha(i). METHODS: Galpha(i) and PLIN as down-stream effectors of MAPKs were assessed in human adipocytes stimulated with TNF-alpha in the absence or presence of specific MAPK inhibitors. RESULTS: A 48-h incubation with TNF-alpha resulted in a pronounced increase in lipolysis, which was paralleled by a decrease in the mRNA and protein expression of PLIN. Both these effects were inhibited in a concentration-dependent manner in the presence of MAPK inhibitors specific for p44/42 (PD98059) and JNK (SP600125). However, TNF-alpha did not affect Galpha(i) mRNA or protein expression. Furthermore, experiments with pertussis toxin demonstrated that inhibition of Galpha(i) signaling did not affect TNF-alpha-mediated lipolysis. CONCLUSIONS: Our results suggest that TNF-alpha-mediated lipolysis is dependent on down-regulation of PLIN expression via p44/42 and JNK. This could be an important mechanism for the development of insulin resistance in both obesity and cachexia. However, in contrast to findings in rodent cells, Galpha(i) does not appear to be essential for TNF-alpha-induced lipolysis in human adipocytes. 相似文献
7.
Sibutramine is a satiety-inducing serotonin-noradrenaline reuptake inhibitor that acts predominantly via its primary and secondary metabolites. This study investigates the possibility that sibutramine and/or its metabolites could act directly on white adipose tissue to increase lipolysis. Adipocytes were isolated by a collagenase digestion procedure from homozygous lean (+/+) and obese-diabetic OB/OB mice, and from lean nondiabetic human subjects. The lipolytic activity of adipocyte preparations was measured by the determination of glycerol release over a 2-hour incubation period. The primary amine metabolite of sibutramine M2, caused a concentration-dependent stimulation of glycerol release by murine lean and obese adipocytes (maximum increase by 157+/-22 and 245+/-16%, respectively, p<0.05). Neither sibutramine nor its secondary amine metabolite M1 had any effect on lipolytic activity. Preliminary studies indicated that M2-induced lipolysis was mediated via a beta-adrenergic action. The non-selective beta-adrenoceptor antagonist propranolol (10 (-6) M) strongly inhibited M2-stimulated lipolysis in lean and obese murine adipocytes. M2 similarly increased lipolysis by isolated human omental and subcutaneous adipocytes (maximum increase by 194+/-33 and 136+/-4%, respectively, p<0.05) with EC50 values of 12 nM and 3 nM, respectively. These results indicate that the sibutramine metabolite M2 can act directly on murine and human adipose tissue to increase lipolysis via a pathway involving beta-adrenoceptors. 相似文献
8.
A modified procedure for preparation of hamster adipocytes by collagenase digestion under carefully controlled conditions has been developed. The adipocytes were 4- to 8-fold more sensitive to catecholamine stimulation of lipolysis than cells prepared by a commonly used method (Hittelman, K.J., Wu, C.F. and Butcher, R.W. (1973) Biochim. Biophys. Acta 304, 188-196) and also more sensitive to the anti-lipolytic action of insulin. The effects of insulin on lipogenesis, measured as [3H]glucose conversion to cell lipids, and on catecholamine-stimulated lipolysis were compared under identical conditions with the same cell batch. Isoprenaline-stimulated lipolysis was found to be half-maximally inhibited by an insulin concentration 8-fold lower than that stimulating lipogenesis to a corresponding extent (half-maximal effects at insulin concentrations of 40 vs. 300 pM). A similar difference was found when cells had been stimulated with adrenaline instead of isoprenaline. 相似文献
9.
10.
Figueroa JE Vijayagopal P Prasad C 《Biochemical and biophysical research communications》2002,293(2):847-849
Azaftig is an urinary proteoglycan present in some cancer and AIDS patients experiencing weight loss. Administration of azaftig to mice results in weight loss that is associated with loss of fat depot. So far, very little is known about the mechanism underlying loss of fat depot in mice or weight loss in patients excreting azaftig. Augmentation of lipolysis may be one mechanism that can cause reduction of fat depot. Therefore, the present study was designed to examine the effect of azaftig on lipolysis by adipocytes derived from obese rats and humans. Results show a dose-dependent potentiation of lipolysis by azaftig in both rat and human adipocytes. 相似文献
11.
12.
Fifty peptides and hormones from the hypophysis, hypothalamus, gastrointestinal tract and from other origins were tested for lipolytic activity in the isolated rabbit fat cell. Eight peptides derived from the precursor hormone proopiocortin stimulated glycerol release while all the other peptides and hormones showed no lipolytic activity. The most potent lipolytic peptide was alpha-MSH which also had the lowest minimal effective dose, followed by beta-lipotropin, ACTH and beta-MSH. The lipolytic activity was not influenced by the use of different collagenases or the cells from different breeds of rabbits. 相似文献
13.
S C Blair G J Cooney G S Denyer P F Williams I D Caterson 《Biochimica et biophysica acta》1991,1085(3):385-388
Lipogenesis was measured in 2 and 5 week gold-thioglucose (GTG) obese mice after a single meal of 0.5 g of standard chow. Compared to control mice the rate of lipogenesis in GTG obese mice, was 4-fold higher in liver and 10-fold higher in white adipose tissue (WAT). In brown adipose tissue (BAT) of GTG-injected mice the lipogenic rate was only 50% of that of controls. These results indicate that the increased lipid synthesis observed in GTG-injected mice is not due solely to hyperphagia and that some other stimuli, such as increased basal insulin levels and/or decreased thermogenesis and insulin resistance in BAT, contribute to the high rates of fat synthesis in this animal model of obesity. 相似文献
14.
Brain insulin controls adipose tissue lipolysis and lipogenesis 总被引:1,自引:0,他引:1
Scherer T O'Hare J Diggs-Andrews K Schweiger M Cheng B Lindtner C Zielinski E Vempati P Su K Dighe S Milsom T Puchowicz M Scheja L Zechner R Fisher SJ Previs SF Buettner C 《Cell metabolism》2011,13(2):183-194
White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality. 相似文献
15.
16.
Adipose tissue is the only tissue capable of hydrolyzing its stores of triacylglycerol (TAG) and of mobilizing fatty acids and glycerol in the bloodstream so that they can be used by other tissues. The full hydrolysis of TAG depends on the activity of three enzymes, adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase, each of which possesses a distinct regulatory mechanism. Although more is known about HSL than about the other two enzymes, it has recently been shown that HLS and ATGL can be activated simultaneously, such that the mechanism that enables HSL to access the surface of lipid droplets also permits the stimulation of ATGL. The classical pathway of lipolysis activation in adipocytes is cAMP-dependent. The production of cAMP is modulated by G-protein-coupled receptors of the Gs/Gi family and cAMP degradation is regulated by phosphodiesterase. However, other pathways that activate TAG hydrolysis are currently under investigation. Lipolysis can also be started by G-protein-coupled receptors of the Gq family, through molecular mechanisms that involve phospholipase C, calmodulin and protein kinase C. There is also evidence that increased lipolytic activity in adipocytes occurs after stimulation of the mitogen-activated protein kinase pathway or after cGMP accumulation and activation of protein kinase G. Several agents contribute to the control of lipolysis in adipocytes by modulating the activity of HSL and ATGL. In this review, we have summarized the signalling pathways activated by several agents involved in the regulation of TAG hydrolysis in adipocytes. 相似文献
17.
Grisouard J Bouillet E Timper K Radimerski T Dembinski K Frey DM Peterli R Zulewski H Keller U Müller B Christ-Crain M 《Innate immunity》2012,18(1):25-34
High fat diet-induced endotoxaemia triggers low-grade inflammation and lipid release from adipose tissue. This study aims to unravel the cellular mechanisms leading to the lipopolysaccharide (LPS) effects in human adipocytes. Subcutaneous pre-adipocytes surgically isolated from patients were differentiated into mature adipocytes in vitro. Lipolysis was assessed by measurement of glycerol release and mRNA expression of pro-inflammatory cytokines were evaluated by real-time PCR. Treatment with LPS for 24 h induced a dose-dependent increase in interleukin (IL)-6 and IL-8 mRNA expression. At 1 μg/ml LPS, IL-6 and IL-8 were induced to 19.5 ± 1.8-fold and 662.7 ± 91.5-fold (P < 0.01 vs basal), respectively. From 100 ng/ml to 1 μg/ml, LPS-induced lipolysis increased to a plateau of 3.1-fold above basal level (P < 0.001 vs basal). Co-treatment with inhibitors of inhibitory kappa B kinase kinase beta (IKKβ) or NF-κB inhibited LPS-induced glycerol release. Co-treatment with the protein kinase A (PKA) inhibitor H-89, the lipase inhibitor orlistat or the hormone-sensitive lipase (HSL) inhibitor CAY10499 abolished the lipolytic effects of LPS. Co-treatment with the MAPK inhibitor, U0126 also reduced LPS-induced glycerol release. Inhibition of lipolysis by orlistat or CAY10499 reduced LPS-induced IL-6 and IL-8 mRNA expression. Induction of lipolysis by the synthetic catecholamine isoproterenol or the phosphodiesterase type III inhibitor milrinone did not alter basal IL-6 and IL-8 mRNA expression after 24 treatments whereas these compounds enhanced LPS-induced IL-6 and IL-8 mRNA expression. Both the inflammatory IKKβ/NF-κB pathway and the lipolytic PKA/HSL pathways mediate LPS-induced lipolysis. In turn, LPS-induced lipolysis reinforces the expression of pro-inflammatory cytokines and, thereby, triggers its own lipolytic activity. 相似文献
18.
Docosahexaenoic acid (DHA) is one kind of ω-3 polyunsaturated fatty acids (PUFAs) and plays an important role in lipid metabolism.
In this research, mice were daily intragastric administrated with DHA for 3 weeks. Subcutaneous adipose tissue and liver were
separated every week, RNA was extracted. Peroxisome proliferator-activated receptor (PPARγ), Sterol regulatory element binding protein-1c (SREBP-1c), Fatty acid synthetase (FAS), Hormone sensitive lipase (HSL) and triglyceride hydrolase TGH genes expression were detected by quantitative PCR. Data showed that, DHA up-regulated PPARγ, HSL and TGH in adipose tissue, but it had no effect on SREBP-1c and FAS expression. However, in liver there were some differences in regulating these genes. PPARγ, SREBP-1c and FAS were down-regulated, HSL was up-regulated and TGH had no change. These results indicated that DHA played different regulating roles in lipid metabolism in different tissues.
In adipose tissue, DHA increased the expression of lipogenesis and lipolysis genes. In liver lipogenesis genes were decreased,
but lipolysis genes were increased by DHA. In conclusion, DHA could reduce body fat mass through regulating lipogenesis and
lipolysis genes. 相似文献
19.
Alpha-2 adrenergic activation inhibits forskolin-stimulated adenylate cyclase activity and lipolysis in human adipocytes 总被引:1,自引:0,他引:1
Forskolin at 10 muM caused a 100-fold increase in the intracellular concentration of cyclic AMP and a 6-fold increase in glycerol release in the human adipocyte. These responses are comparable to those prompted by 10 muM isoproterenol. The effects of forskolin on cyclic AMP and lipolysis were dose-dependent. Alpha-2 adrenergic activation, achieved with 10 muM epinephrine and 30 muM propranolol, significantly inhibited forskolin-stimulated cyclic AMP accumulation and glycerol release, shifting the dose-response curves to the right. Forskolin at 10 muM caused a 4.5-fold increase in the adenylate cyclase activity of human adipocyte membranes. When either isoproterenol or epinephrine (0.1 mM) was combined with forskolin, the magnitude of response was substantially greater than the sum of responses achieved by each agent incubated alone. 相似文献
20.
Katarzyna Szkudelska Leszek Nogowski Tomasz Szkudelski 《The Journal of steroid biochemistry and molecular biology》2009,113(1-2):17-24
Resveratrol is a naturally occurring diphenolic compound exerting numerous beneficial effects in the organism. The present study demonstrated its short-term, direct influence on lipogenesis, lipolysis and the antilipolytic action of insulin in freshly isolated rat adipocytes. In fat cells incubated for 90 min with 125 and 250 μM resveratrol (but not with 62.5 μM resveratrol), basal and insulin-induced lipogenesis from glucose was significantly reduced. The antilipogenic effect was accompanied by a significant diminution of CO2 release and enhanced production of lactate. The inhibition of glucose conversion to lipids found in the presence of resveratrol was not attenuated by activator of protein kinase C. However, acetate conversion to lipids appeared to be insensitive to resveratrol.In adipocytes incubated for 90 min with epinephrine, 10 and 100 μM resveratrol significantly enhanced lipolysis, especially at lower concentrations of the hormone. However, the lipolytic response to dibutyryl-cAMP, a direct activator of protein kinase A, was unchanged. Further studies demonstrated that, in cells stimulated with epinephrine, 1, 10 and 100 μM resveratrol significantly enhanced glycerol release despite the presence of insulin or H-89, an inhibitor of protein kinase A. The influence of resveratrol on epinephrine-induced lipolysis and on the antilipolytic action of insulin was not abated by the blocking of estrogen receptor and was accompanied by a significant (with the exception of 1 μM resveratrol in experiment with insulin) increase in cAMP in adipocytes. It was also revealed that resveratrol did not change the proportion between glycerol and fatty acids released from adipocytes exposed to epinephrine.Results of the present study revealed that resveratrol reduced glucose conversion to lipids in adipocytes, probably due to disturbed mitochondrial metabolism of the sugar. Moreover, resveratrol increased epinephrine-induced lipolysis. This effect was found also in the presence of insulin and resulted from the synergistic action of resveratrol and epinephrine. The obtained results provided evidence that resveratrol affects lipogenesis and lipolysis in adipocytes contributing to reduced lipid accumulation in these cells. 相似文献