首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatitis C virus (HCV) NS5A has been reported to be important for the establishment of replication by adaptive mutations or localization, although its role in viral replication remains unclear. It was previously reported that NS5A interacts with NS5B via two regions of NS5A in the isolate JK-1 and modulates the activity of NS5B RdRp (Y. Shirota et al., J. Biol. Chem., 277:11149-11155, 2002), but the biological significance of this interaction has not been determined. In this study, we addressed the effect of this interaction on HCV RNA replication with an HCV replicon system derived from the isolate M1LE (H. Kishine et al., Biochem. Biophys. Res. Commun., 293:993-999, 2002). We constructed three internal deletion mutants, M1LE/5Adel-1 and M1LE/5Adel-2, each encoding NS5A which cannot bind NS5B, and M1LE/5Adel-3, encoding NS5A that can bind NS5B. After transfection into Huh-7 cells, M1LE/5Adel-3 was replication competent, but both M1LE/5Adel-1 and M1LE/5Adel-2 were not. Next we prepared 20 alanine-substituted clustered mutants within both NS5B-binding regions and examined the effect of these mutants on HCV RNA replication. Only 5 of the 20 mutants were replication competent. Subsequently, we introduced a point mutation, S225P, a deletion of S229, or S232I into NS5A and prepared cured Huh-7 cells that were cured of RNA replication by alpha interferon. Finally, with these point mutations and cured cells, we established a highly improved replicon system. In this system, only the same five mutants were replication competent. These results strongly suggest that the interaction between NS5A and NS5B is critical for HCV RNA replication in the HCV replicon system.  相似文献   

2.
3.
Einav S  Elazar M  Danieli T  Glenn JS 《Journal of virology》2004,78(20):11288-11295
Hepatitis C virus (HCV) is a major cause of viral hepatitis. There is no effective therapy for most patients. We have identified a nucleotide binding motif (NBM) in one of the virus's nonstructural proteins, NS4B. This structural motif binds and hydrolyzes GTP and is conserved across HCV isolates. Genetically disrupting the NBM impairs GTP binding and hydrolysis and dramatically inhibits HCV RNA replication. These results have exciting implications for the HCV life cycle and novel antiviral strategies.  相似文献   

4.
We previously reported that nucleolin, a representative nucleolar marker, interacts with nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) through two independent regions of NS5B, amino acids 208 to 214 and 500 to 506. We also showed that truncated nucleolin that harbors the NS5B-binding region inhibited the RNA-dependent RNA polymerase activity of NS5B in vitro, suggesting that nucleolin may be involved in HCV replication. To address this question, we focused on NS5B amino acids 208 to 214. We constructed one alanine-substituted clustered mutant (CM) replicon, in which all the amino acids in this region were changed to alanine, as well as seven different point mutant (PM) replicons, each of which harbored an alanine substitution at one of the amino acids in the region. After transfection into Huh7 cells, the CM replicon and the PM replicon containing NS5B W208A could not replicate, whereas the remaining PM replicons were able to replicate. In vivo immunoprecipitation also showed that the W208 residue of NS5B was essential for its interaction with nucleolin, strongly suggesting that this interaction is essential for HCV replication. To gain further insight into the role of nucleolin in HCV replication, we utilized the small interfering RNA (siRNA) technique to investigate the knockdown effect of nucleolin on HCV replication. Cotransfection of replicon RNA and nucleolin siRNA into Huh7 cells moderately inhibited HCV replication, although suppression of nucleolin did not affect cell proliferation. Taken together, our findings strongly suggest that nucleolin is a host component that interacts with HCV NS5B and is indispensable for HCV replication.  相似文献   

5.
Kim S  Welsch C  Yi M  Lemon SM 《Journal of virology》2011,85(13):6645-6656
Although hepatitis C virus (HCV) assembly remains incompletely understood, recent studies with the genotype 2a JFH-1 strain suggest that it is dependent upon the phosphorylation of Ser residues near the C terminus of NS5A, a multifunctional nonstructural protein. Since genotype 1 viruses account for most HCV disease yet differ substantially in sequence from that of JFH-1, we studied the role of NS5A in the production of the H77S virus. While less efficient than JFH-1, genotype 1a H77S RNA produces infectious virus when transfected into permissive Huh-7 cells. The exchange of complete NS5A sequences between these viruses was highly detrimental to replication, while exchanges of the C-terminal domain III sequence (46% amino acid sequence identity) were well tolerated, with little effect on RNA synthesis. Surprisingly, the placement of the H77S domain III sequence into JFH-1 resulted in increased virus yields; conversely, H77S yields were reduced by the introduction of domain III from JFH-1. These changes in infectious virus yield correlated well with changes in the abundance of NS5A in RNA-transfected cells but not with RNA replication or core protein expression levels. Alanine replacement mutagenesis of selected Ser and Thr residues in the C-terminal domain III sequence revealed no single residue to be essential for infectious H77S virus production. However, virus production was eliminated by Ala substitutions at multiple residues and could be restored by phosphomimetic Asp substitutions at these sites. Thus, despite low overall sequence homology, the production of infectious virus is regulated similarly in JFH-1 and H77S viruses by a conserved function associated with a C-terminal Ser/Thr cluster in domain III of NS5A.  相似文献   

6.
We identified an N-terminal amphipathic helix (AH) in one of hepatitis C virus (HCV)'s nonstructural proteins, NS5A. This AH is necessary and sufficient for membrane localization and is conserved across isolates. Genetically disrupting the AH impairs HCV replication. Moreover, an AH peptide-mimic inhibits the membrane association of NS5A in a dose-dependent manner. These results have exciting implications for the HCV life cycle and novel antiviral strategies.  相似文献   

7.

Background

Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated.

Results

Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material.

Conclusion

Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents.  相似文献   

8.
9.
Fridell RA  Qiu D  Valera L  Wang C  Rose RE  Gao M 《Journal of virology》2011,85(14):7312-7320
BMS-790052, targeting nonstructural protein 5A (NS5A), is the most potent hepatitis C virus (HCV) inhibitor described to date. It is highly effective against genotype 1 replicons and also displays robust genotype 1 anti-HCV activity in the clinic (M. Gao et al., Nature 465:96-100, 2010). BMS-790052 inhibits genotype 2a JFH1 replicon cells and cell culture infectious virus with 50% effective concentrations (EC(50)s) of 46.8 and 16.1 pM, respectively. Resistance selection studies with the JFH1 replicon and virus systems identified drug-induced mutations within the N-terminal region of NS5A. F28S, L31M, C92R, and Y93H were the major resistance mutations identified; the impact of these mutations on inhibitor sensitivity between the replicon and virus was very similar. The C92R and Y93H mutations negatively impacted fitness of the JFH1 virus. Second-site replacements at NS5A residue 30 (K30E/Q) restored efficient replication of the C92R viral variant, thus demonstrating a genetic interaction between NS5A residues 30 and 92. By using a trans-complementation assay with JFH1 replicons encoding inhibitor-sensitive and inhibitor-resistant NS5A proteins, we provide genetic evidence that NS5A performs the following two distinct functions in HCV RNA replication: a cis-acting function that likely occurs as part of the HCV replication complex and a trans-acting function that may occur outside the replication complex. The cis-acting function is likely performed by basally phosphorylated NS5A, while the trans-acting function likely requires hyperphosphorylation. Our data indicate that BMS-790052 blocks the cis-acting function of NS5A. Since BMS-790052 also impairs JFH1 NS5A hyperphosphorylation, it likely also blocks the trans-acting function.  相似文献   

10.
RNA interference (RNAi) is a phenomenon in which small interfering RNA (siRNA), an RNA duplex 21 to 23 nucleotides (nt) long, or short hairpin RNA (shRNA) resembling siRNA, mediates degradation of the target RNA molecule in a sequence-specific manner. RNAi is now expected to be a useful therapeutic strategy for hepatitis C virus (HCV) infection. In the present study we compared the efficacy of a number of shRNAs directed against different target regions of the HCV genome, such as 5'-untranslated region (5'UTR) (nt 286 to 304), Core (nt 371 to 389), NS3-1 (nt 2052 to 2060), NS3-2 (nt 2104 to 2122), and NS5B (nt 7326 to 7344), all of which except for NS5B are conserved among most, if not all, HCV subtype 1b (HCV-1b) isolates in Japan. We utilized two methods to express shRNAs, one utilizing an expression plasmid (pAVU6+27) and the other utilizing a recombinant lentivirus harboring the pAVU6+27-derived expression cassette. Although 5'UTR has been considered to be the most suitable region for therapeutic siRNA and/or shRNA because of its extremely high degree of sequence conservation, we observed only a faint suppression of an HCV subgenomic replicon by shRNA against 5'UTR. In both plasmid-and lentivirus-mediated expression systems, shRNAs against NS3-1 and NS5B suppressed most efficiently the replication of the HCV replicon without suppressing host cellular gene expression. Synthetic siRNA against NS3-1 also inhibited replication of the HCV replicon in a dose-dependent manner. Taken together, the present results imply the possibility that the recombinant lentivirus expressing shRNA against NS3-1 would be a useful tool to inhibit HCV-1b infection.  相似文献   

11.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) plays multiple and diverse roles in the viral lifecycle, and is currently recognized as a novel target for anti-viral therapy. To establish an HCV cell culture system with NS5A of various strains, recombinant viruses were generated by replacing NS5A of strain JFH-1 with those of strains of genotypes 1 (H77; 1a and Con1; 1b) and 2 (J6CF; 2a and MA; 2b). All these recombinant viruses were capable of replication and infectious virus production. The replacement of JFH-1 NS5A with those of genotype 1 strains resulted in similar or slightly reduced virus production, whereas replacement with those of genotype 2 strains enhanced virus production as compared with JFH-1 wild-type. A single cycle virus production assay with a CD81-negative cell line revealed that the efficient virus production elicited by replacement with genotype 2 strains depended on enhanced viral assembly, and that substitutions in the C-terminus of NS5A were responsible for this phenotype. Pulse-chase assays revealed that these substitutions in the C-terminus of NS5A were possibly associated with accelerated cleavage kinetics at the NS5A–NS5B site. Using this cell culture system with NS5A-substituted recombinant viruses, the anti-viral effects of an NS5A inhibitor were then examined. A 300- to 1000-fold difference in susceptibility to the inhibitor was found between strains of genotypes 1 and 2. This system will facilitate not only a better understanding of strain-specific roles of NS5A in the HCV lifecycle, but also enable the evaluation of genotype and strain dependency of NS5A inhibitors.  相似文献   

12.
Hepatitis C virus (HCV) NS5B is RNA-dependent RNA polymerase (RdRP), the essential catalytic enzyme for HCV replication. Recently, NS5A has been reported to be important for the establishment of HCV replication in vitro by the adaptive mutations, although its role in viral replication remains uncertain. Here we report that purified bacterial recombinant NS5A and NS5B directly interact with each other in vitro, detected by glutathione S-transferase (GST) pull-down assay. Furthermore, complex formation of these proteins transiently coexpressed in mammalian cells was detected by coprecipitation. Using terminally and internally truncated NS5A, two discontinuous regions of NS5A (amino acids 105-162 and 277-334) outside of the adaptive mutations were identified to be independently essential for the binding both in vivo and in vitro (Yamashita, T., Kaneko, S., Shirota, Y., Qin, W., Nomura, T., Kobayashi, K., and Mkyrakami, S. (1998) J. Biol. Chem. 273, 15479-15486). We previously examined the effect of His-NS5A on RdRP activity of the soluble recombinant NS5Bt in vitro (see Yamashita et al. above). Wild NS5A weakly stimulated at first (when less than 0.1 molar ratio to NS5B) and then inhibited the NS5Bt RdRP activity in a dose-dependent manner. The internal deletion mutants defective in NS5B binding exhibited no inhibitory effect, indicating that the NS5B binding is necessary for the inhibition. Taken together, our results support the idea that NS5A modulates HCV replication as a component of replication complex.  相似文献   

13.
14.
15.
The nucleic acid binding channel of the hepatitis C virus RNA polymerase remains to be defined. Here we employed complementary footprinting techniques and show that the enzyme binds to a newly synthesized duplex of approximately seven to eight base pairs. Comparative analysis of surface topologies of free enzyme versus the nucleoprotein complex revealed certain lysines and arginines that are protected from chemical modification upon RNA binding. The protection pattern helps to define the trajectory of the nucleic acid substrate. Lys(81), Lys(98), Lys(100), Lys(106), Arg(158), Arg(386), and Arg(394) probably interact with the bound RNA. The selective protection of amino acids of the arginine-rich region in helix T points to RNA-induced conformational rearrangements. Together, these findings suggest that RNA-protein interaction through the entire substrate binding channel can modulate intradomain contacts at the C terminus.  相似文献   

16.
Abstract: Since January 1990, Japanese Red Cross Blood Centres have introduced hepatitis C virus screening with a first-generation ELISA. From April to December 1992, approximately 0.98% among 10905 489 blood donations screened by a second-generation assay were anti-HCV-positive in all Japan. Seropositivity of anti-HCV increased with the age and serum transminase value in both sexes. In blood donors having a history of transfusion, the anti-HCV reactive rate was 7.4%. The results of the study made by the Japanese Red Cross Non-A, Non-B Hepatitis Research Group show the effectiveness of implementation of HCV screening to prevent posttransfusion hepatitis. Consecutive haemodialysis patients with chronic renal failure are at risk for inflection by a variety of blood-borne agents transmitted within dialysis units. Because of their immunocompromised state, they frequently also have an unusual susceptibility to a variety of nosocomial infections, such as HBV, and HTLV-I. We tested the prevalence of anti-HCV in 1423 (848 males and 575 females) haemodialiysis patients from 18 hospitals in Kumamoto Prefecture, Japan using the Orhto first generation anti- HCV screening assay. There were 316 patients (22.2%) positive for HCV antibodies. The second-generation test was positive in most haemodialysis patients who were eractive to the firs-generation assay. The prevalence of HCV infection increased with the duration of haemodialysis, yet there was a high frequency of HCV seropositivity even wihtout blood transfusion. Acquisition of HCV in dialysis patients could be explained by HCV seropositivity even without blood (all haemodialysis are done with disposable kits, and needles), by secondary HCV infection after the immunodeficiency of haemodialysis, or by HCV infection of the kidney or glomerular deposition of immune HCV/anti-HCV complexes leading to chronic renal failure (as with HBV infection of the liver and kidney).  相似文献   

17.
The clinical correlation between the degree of HCV variability and the response to anti-HCV treatment in HIV positive patients infected with HCV genotype 3a is unknown. In this study, 27 HIV positive and 5 HIV negative patients with HCV genotype 3a infection were treated with interferon-alpha-2b with or without ribavirin. Nine patients (5 HIV positive) achieved a sustained virological response (SR) and 23 (only one HIV negative) were non-responders (NR). Sequence analyses of the partial E2 domain and the non-structural 5A protein were performed at baseline in all patients, and before and during treatment in the HIV positive NRs. There was no difference in the mean number of amino acid mutations from HCV 3a prototype, within E2 region, between the HIV positive and HIV negative patients: 17 (range 11-25) vs 16 (range 14-17). The mean baseline number of mutations in E2 region, was similar in HIV positive SRs and NRs: 18 (range 14-25) vs 16 (range 11-19). Phylogenetic analysis of HCV paired serum samples at baseline and during treatment revealed identical E2 sequence in 5/21 HIV positive NR patients, whereas 6 other sequences were strictly related to baseline E2 domain and the remaining 10 were divergent. The mean number of amino acid mutations in the NS5A protein at baseline, was 1 (range 0-3) in HIV negative patients and 2 (range 0-4) in HIV positive ones. This region was highly conserved in all isolates of HIV positive NRs analysed during treatment. These results suggest that genetic variability at baseline within the E2 region and NS5A protein of HCV 3a strain obtained from HIV positive and HIV negative patients is not associated with treatment response. Furthermore, the anti-HCV treatment did not influence HCV heterogeneity within the E2 and NS5A domains in HIV positive patients infected with HCV genotype 3a.  相似文献   

18.
Infection with hepatitis C virus (HCV) is a major medical problem with over 170 million people infected worldwide. Substantial morbidity and mortality are associated with hepatic manifestations (cirrhosis and hepatocellular carcinoma), which develop with increasing frequency in people infected with HCV for more than 20 years. Less well known is the burden of HCV disease associated with extrahepatic manifestations (diabetes, B-cell proliferative disorders, depression, cognitive disorders, arthritis and Sj?gren's syndrome). For patients infected with genotype 1 HCV, treatment with polyethylene glycol decorated interferon (peginterferon) α and ribavirin (PR) is associated with a low (40-50%) success rate, substantial treatment-limiting side effects and a long (48-week) duration of treatment. In the past 15 years, major scientific advances have enabled the development of new classes of HCV therapy, the direct-acting antiviral agents, also known as specifically targeted antiviral therapy for hepatitis C (STAT-C). In combination with PR, the HCV NS3-4A protease inhibitor telaprevir has recently been approved for treatment of genotype 1 chronic HCV in the United States, Canada, European Union and Japan. Compared with PR, telaprevir combination therapy offers significantly improved viral cure rates and the possibility of shortened treatment duration for diverse patient populations. Developers of innovative drugs have to blaze a new path with few validated sign posts to guide the way. Indeed, telaprevir's development was once put on hold because of its performance in a standard IC(50) assay. Data from new hypotheses and novel experiments were required to justify further investment and reduce risk that the drug might fail in the clinic. In addition, the poor drug-like properties of telaprevir were a formidable hurdle, which the manufacturing and formulation teams had to overcome to make the drug. Finally, novel clinical trial designs were developed to improve efficacy and shorten treatment in parallel instead of sequentially. Lessons learned from the development of telaprevir suggest that makers of innovative medicines cannot rely solely on traditional drug discovery metrics, but must develop innovative, scientifically guided pathways for success.  相似文献   

19.
The aims of this study were to (i) evaluate the prevalence and the incidence of hepatitis C virus (HCV) infection in hemodialysis patients in two different centers in S?o Paulo (Brazil), (ii) determine the time required to detect HCV infection among these patients by serology or PCR, (iii) establish the importance of alanine aminotransferase determination as a marker of HCV infection, and (iv) identify the HCV genotypes in this population. Serum samples were collected monthly for 1 year from 281 patients admitted to hospital for hemodialysis. Out of 281 patients, 41 patients (14.6%) were HCV positive; six patients seroconverted during this study (incidence = 3.1/1000 person-month). In 1.8% (5/281) of cases, RNA was detected before the appearance of antibodies (up to 5 months), and in 1.1% (3/281) of cases, RNA was the unique marker of HCV infection. The genotypes found were 1a, 1b, 3a, and 4a. The presence of genotype 4a is noteworthy, since it is a rare genotype in Brazil. These data pointed out the high prevalence and incidence of HCV infection at hemodialysis centers in Brazil and showed that routine PCR is fundamental for improving the detection of HCV carriers among patients undergoing hemodialysis.  相似文献   

20.
The hepatitis C virus (HCV) nonstructural protein (NS) 5A is a phosphoprotein that associates with various cellular proteins and participates in the replication of the HCV genome. Human vesicle-associated membrane protein-associated protein (VAP) subtype A (VAP-A) is known to be a host factor essential for HCV replication by binding to both NS5A and NS5B. To obtain more information on the NS5A protein in HCV replication, we screened human brain and liver libraries by a yeast two-hybrid system using NS5A as bait and identified VAP-B as an NS5A-binding protein. Immunoprecipitation and mutation analyses revealed that VAP-B binds to both NS5A and NS5B in mammalian cells and forms homo- and heterodimers with VAP-A. VAP-A interacts with VAP-B through the transmembrane domain. NS5A interacts with the coiled-coil domain of VAP-B via 70 residues in the N-terminal and 341 to 344 amino acids in the C-terminal polyproline cluster region. NS5A was colocalized with VAP-B in the endoplasmic reticulum and Golgi apparatus. The specific antibody to VAP-B suppressed HCV RNA replication in a cell-free assay. Overexpression of VAP-B, but not of a mutant lacking its transmembrane domain, enhanced the expression of NS5A and NS5B and the replication of HCV RNA in Huh-7 cells harboring a subgenomic replicon. In the HCV replicon cells, the knockdown of endogenous VAP-B by small interfering RNA decreased expression of NS5B, but not of NS5A. These results suggest that VAP-B, in addition to VAP-A, plays an important role in the replication of the HCV genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号