首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coarse-grained molecular dynamics simulation has been performed to study the aggregated morphology of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), adsorbed on nanoscale graphene surfaces. The CTAB surfactants can self-assemble on graphene to form various supramolecular morphologies and structures. The effect of packing density, thickness of graphene sheet and width of graphene nanoribbon on the CTAB–graphene self-assembly has been investigated. The buoyant densities of various graphene–CTAB assemblies were calculated, which increase with surfactant coverage and number of graphene layers. This result demonstrates that density gradient can be used to isolate graphenes with various layers. This simulation provides larger-scale microscopic insight into the supramolecular self-assembly nanostructures for the CTAB surfactants aggregated on graphene, which could be valuable to guide fabrication of graphene-based hybrid nanocomposites.  相似文献   

2.
Summary. Starting from glutamic acid, different types of surfactants have been synthesised by using original trimodular strategies. Monosubstituted zwitterionic amides of glutamic acid obtained with excellent yields show good surface activity. The grafting of a second hydrophobic side-chain leads to bicatenar cationic surfactants or to disubstituted nonionic cyclic compounds. In order to reduce the hydrophobic character of the bicatenar surfactants, a second synthetic method has been developed, allowing the introduction of a polar sugar group into these molecules. The surfactant properties of several of the products have been determined by physico-chemical methods such as surface tension measurements and compression isotherm studies by means of a Langmuir balance.  相似文献   

3.
Summary. In an attempt to increase our knowledge regarding the mechanisms of surfactant membrane interaction, we studied the action of several anionic and cationic amino acid-based surfactants on membrane fluidity using fluorescence anisotropy. Anisotropy measurements demonstrated that almost all of the surfactants studied disturbed the external region of the erythrocyte membrane without affecting the core of the bilayer. How the physico-chemical properties and structure of these compounds affect dynamics of the lipid bilayer is discussed in detail.  相似文献   

4.
A large number of surfactants (surface active molecules) are chemically simple compounds that can be obtained by simple chemical reactions, in some cases even under presumably prebiotic conditions. Surfactant assemblies are self-organized polymolecular aggregates of surfactants, in the simplest case micelles, vesicles, hexagonal and cubic phases. It may be that these different types of surfactant assemblies have played various, so-far underestimated important roles in the processes that led to the formation of the first living systems.Although nucleic acids are key players in the formation of cells as we know them today (RNA world hypothesis), it is still unclear how RNA could have been formed under prebiotic conditions. Surfactants with their self-organizing properties may have assisted, controlled and compartimentalized some of the chemical reactions that eventually led to the formation of molecules like RNA. Therefore, surfactants were possibly very important in prebiotic times in the sense that they may have been involved in different physical and chemical processes that finally led to a transformation of non-living matter to the first cellular form(s) of life. This hypothesis is based on four main experimental observations: (i) Surfactant aggregation can lead to cell-like compartimentation (vesicles). (ii) Surfactant assemblies can provide local reaction conditions that are very different from the bulk medium, which may lead to a dramatic change in the rate of chemical reactions and to a change in reaction product distributions. (iii) The surface properties of surfactant assemblies that may be liquid- or solid-like, charged or neutral, and the elasticity and packing density of surfactant assemblies depend on the chemical structure of the surfactants, on the presence of other molecules, and on the overall environmental conditions (e. g. temperature). This wide range of surface characteristics of surfactant assemblies may allow a control of surface-bound chemical reactions not only by the charge or hydrophobicity of the surface but also by its “softness”. (iv) Chiral polymolecular assemblies (helices) may form from chiral surfactants.There are many examples that illustrate the different roles and potential roles of surfactant assemblies in different research areas outside of the field of the origin(s) of life, most importantly in investigations of contemporary living systems, in nanotechnology applications, and in the development of drug delivery systems. Concepts and ideas behind many of these applications may have relevance also in connection to the different unsolved problems in understanding the origin(s) of life.  相似文献   

5.
A Beaubien  L Keita    C Jolicoeur 《Applied microbiology》1987,53(10):2567-2573
The influence of various surfactants on the biological activity of a mixed aerobic culture has been investigated by using flow microcalorimetry. The response of the culture to the addition of homologous n-alkylcarboxylates (C2 to C16) and n-alkylpyridinium bromides (C11 to C14) has been examined under endogenous and substrate saturation conditions, and inhibitory concentrations (MIC or the concentration which decreased the initial activity (heat flux) of the culture by 50%) were determined for each state. Under both conditions, the n-alkylpyridinium bromides were found to be more toxic than the n-alkylcarboxylates of identical chain length, thus confirming that the head group of the amphiphiles plays an important role in the microbial toxicity of surfactants. The relationship observed between the concentration at which 50% of the activity is lost and the chain length of the surfactant further confirms that cellular toxicity is also dependent on surfactant hydrophobicity. In relation to the biodegradability of surfactants in mixed aerobic cultures, the low concentration effects of n-alkylcarboxylates on endogenous culture were investigated in some detail. There appear to be compounded indications that these surfactants are rapidly metabolized by the microorganisms of the mixed culture, at least for homologs lower than C10.  相似文献   

6.
The influence of various surfactants on the biological activity of a mixed aerobic culture has been investigated by using flow microcalorimetry. The response of the culture to the addition of homologous n-alkylcarboxylates (C2 to C16) and n-alkylpyridinium bromides (C11 to C14) has been examined under endogenous and substrate saturation conditions, and inhibitory concentrations (MIC or the concentration which decreased the initial activity (heat flux) of the culture by 50%) were determined for each state. Under both conditions, the n-alkylpyridinium bromides were found to be more toxic than the n-alkylcarboxylates of identical chain length, thus confirming that the head group of the amphiphiles plays an important role in the microbial toxicity of surfactants. The relationship observed between the concentration at which 50% of the activity is lost and the chain length of the surfactant further confirms that cellular toxicity is also dependent on surfactant hydrophobicity. In relation to the biodegradability of surfactants in mixed aerobic cultures, the low concentration effects of n-alkylcarboxylates on endogenous culture were investigated in some detail. There appear to be compounded indications that these surfactants are rapidly metabolized by the microorganisms of the mixed culture, at least for homologs lower than C10.  相似文献   

7.
The present investigation aims at studying the effect of mixed surfactant system of sodium lauryl sulphate (SLS) and alkyl polyglucosides (C10APG, C12APG and C12/14APG) on dissolution rate enhancement of poorly water soluble drug. Aceclofenac—a non-steroidal anti-inflammatory agent was used as a model drug as it has limited water solubility. The influence of the surfactant concentration in various blends on dissolution rate of Solid Dispersion (SD), prepared using solution method with ethanol as the solvent was studied and the advantage of mixed surfactant systems over the individual surfactants was illustrated by differences in the in-vitro dissolution profiles of SD. Physico chemical evaluation (critical micellar concentration, zeta potential and β-parameter calculations) was carried out to study the mixed surfactant systems. Solid mixtures were characterized by Infrared spectroscopy (FT-IR); X-ray diffraction studies (XRD) and scanning electron microscopy (SEM). It was seen that the dissolution rate of aceclofenac from SD increased with the increase in the APG proportion relative to SLS with the optimum ratio of 0.2 SLS:0.8 APG showing the best effect in all cases. Results obtained from physico-chemical evaluation (the decrease in the value of critical micelle concentration and higher negative value of β-parameters) suggested the existence of synergism between surfactants blends. The observed results in the dissolution rate enhancement could be attributed to the drug—surfactant interactions as evident from FT-IR, SEM and XRD results.  相似文献   

8.
Studies on Rana tigerina skin collagen   总被引:1,自引:0,他引:1  
The current paper pertains to the study of frog skin, more specifically Rana tigerina skin collagen, which is a major extracellular matrix protein known to play an important role in the wound-healing process. This study revealed interesting differences in the frog skin collagen when compared to the hitherto known vertebrate collagens. This could probably be attributed to the position of the amphibians in the vertebrate hierarchy. Therefore, detailed investigations on the various physico-chemical properties, such as reconstitution, redissolution, viscosity and denaturation were carried out. The study confirms the structural relationship of collagen to habitat and function.  相似文献   

9.
In the context of renewable vs. non-renewable sources of chemical compounds, the development of natural surfactants as a substitute for synthetic surfactants in technological applications is an important issue. In addition, as synthetic surfactants can persist in the environment causing toxic effects, the use of natural products presents a possibility to minimize impact on the environment. Nowadays, a promising new approach in surfactant-based technologies, consists of the use of humic acids (HAs) extracted directly from biomass that exhibit amphiphilic properties, and can be conveniently used as environmentally friendly surfactants. The raw material from which HAs are extracted and their macromolecular composition affect surfactant properties. Therefore fundamental data from more strictly qualitative aspects, needs to be investigated. This review highlights surfactant ability and chemical properties of HA substances coming from renewable sources in comparison to synthetic surfactants, and points out the capacity for HAs to be used effectively in this field of application.  相似文献   

10.
The addition of various polymers to pulmonary surfactants improves surface activity in experiments both in vitro and in vivo. Although the viscosity of surfactants has been investigated, the viscosity of surfactant polymer mixtures has not. In this study, we have measured the viscosities of Survanta and Infasurf with and without the addition of polyethylene glycol, dextran or hyaluronan. The measurements were carried out over a range of surfactant concentrations using two concentrations of polymers at two temperatures. Our results indicate that at lower surfactant concentrations, the addition of any polymers increased the viscosity. However, the addition of polyethylene glycol and dextran to surfactants at clinically used concentrations can substantially lower viscosity. Addition of hyaluronan at clinical surfactant concentrations slightly increased Infasurf viscosity and produced little change in Survanta viscosity. Effects of polymers on viscosity correlate with changes in size and distribution of surfactant aggregates and the apparent free volume of liquid as estimated by light microscopy. Aggregation of surfactant vesicles caused by polymers may therefore not only improve surface activity as previously shown, but may also affect viscosity in ways that could improve surfactant distribution in vivo.  相似文献   

11.
Pulmonary surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). The biological functions of SP-A and SP-D are primarily twofold, namely surfactant homeostasis and host defense. The hydrophobic surfactant proteins, SP-B and SP-C, are required for achieving the optimal surface tension reducing properties of surfactant by promoting the rapid adsorption of surfactant phospholipids along the alveolar surface. Despite the promising findings, only little is known about the extrapulmonary distribution of these proteins. Therefore, in this study, the presence of SP-A, SP-B, SP-C and SP-D in early human placenta has been investigated. First-trimester placental tissues (22–56 days) were obtained from women undergoing curettage during normal pregnancies. In parallel tissue sections, vimentin, cytokeratin-7 and CD-68 immunostainings were used for the identification of mesenchymal cells, trophoblast cells and Hofbauer cells, respectively. According to immunohistochemistry (IHC) results, SP-A, SP-B, SP-C and SP-D immunoreactivities with different staining intensities were observed in trophoblastic layers of chorionic villous tree, trophoblastic cell columns, stromal cells, Hofbauer cells, angiogenic cell cords and vascular endothelium. Fetal hematopoietic cells showed a variable staining pattern for all four surfactant proteins ranging from none to strong intensity. Western blotting of tissue extracts confirmed our IHC results. The presence of surfactant glycoproteins in early human placenta may yield a very important feature of surfactants during first trimester and enables further studies of the role of surfactants in various pregnancy complications.  相似文献   

12.
Sepia cartilage collagen (pepsin-extracted) in acetate buffer (pH = 2.98) forms micelles at a particular concentration below which they do not normally form. The critical micelle concentration (cmc) of the collagen was determined in buffer as well as in SDS, cetyltrimethylammonium bromide (CTAB) and Tween-80 micellar environments at different temperatures. Mutual interaction of collagen micelles with the ionic and nonionic micelles through the formation of the mixed micelle concept has also been found. The cmc of collagen decreased in the presence of SDS and Tween-80 micelles whereas it increased in the presence of CTAB micelles. This clearly suggests that the micelle formation of collagen is facilitated by the presence of SDS and Tween-80 and hindered by CTAB micelles. The various thermodynamic parameters were estimated from viscosity measurements and the transfer of collagen into the micelles of various surfactants and the reverse phenomenon was analyzed. This analysis has also been modelled conceptually as a different phase and the results have supported the above phenomenon. Our thermodynamic results are also able to predict the exact denaturation temperature as well as the structural order of water in the collagen in various environments. The hydrated volumes, Vh, of collagen in the above environments and intrinsic viscosity were also calculated. The low intrinsic viscosity, [eta], of collagen in an SDS environment compared to buffer and other surfactant environments suggested more workable systems in cosmetic and dermatological skin care preparations. The one and two-hydrogen-bonded models of this collagen in various environments have been analyzed. The calculated thermodynamic parameters varied with the concentration of collagen. The change of thermodynamic parameters from coil-coil to random-coil conformation upon denaturation of collagen were calculated from the amount of proline and hydroxyproline residues and compared with viscometric results. Thermodynamic results suggest that the stability of the collagen in the additive environments is in the following order: SDS greater than Tween-80 greater than buffer greater than CTAB.  相似文献   

13.
The hemolytic action of a number of homologous series of cationic surfactants on human erythrocytes was measured. The hemolytic effects of anionic, nonionic and cationic surface-active agents are compared. The relationship which exists between the key physicochemical properties of surfactants (critical micelle concentration, hydrophile-lipophile balance) and their hemolytic capacities is discussed. The parameters required to compare the actions of various surfactants on different cellular membranes are considered in relation to the study of the correlation between the surfactant lytic effects and the features of the membrane molecular organization.  相似文献   

14.
The adsorption of nonionic surfactants on hide powder previously treated with anionic surfactants has been studied. The adsorption of nonionic surfactants takes place through hydrophobic interactions. A mechanism has been proposed for this interaction, assuming that the nonionic surfactant has been fixed by means of secondary adsorption (hydrophobic interaction) after the primary adsorption of the anionic surfactant (ionic and hydrophobic interaction) which makes it possible.  相似文献   

15.
Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations.  相似文献   

16.
C Salerno  A Lucano  P Fasella 《Biochimie》1989,71(4):461-469
Pyridoxal 5'-phosphate, its Schiff base with L-alanine, and cytosolic aspartate aminotransferase were dissolved in isooctane solutions containing reverse micelles of the surfactant di-2-ethylhexylsodium sulfosuccinate and water. The physico-chemical properties of these compounds in the new environment have been studied.  相似文献   

17.
The displacement of the proteins (beta-lactoglobulin and beta-casein) from an air-water interface by the nonionic (Tween 20 and Tween 60) and ionic (sodium dodecyl sulfate, cetyltrimethylammonium bromide, and lyso-phosphatidylcholine-lauroyl) surfactants has been visualized by atomic force microscopy (AFM). The surface structure has been sampled by the use of Langmuir-Blodgett deposition onto mica substrates to allow imaging in the AFM. In all cases, the displacement process was found to occur through the recently proposed orogenic mechanism (Mackie et al. J. Colloid Interface Sci. 1999, 210, 157-166). In the case of the nonionic surfactants, the displacement involved nucleation and growth of surfactant domains leading to failure of the protein network and subsequent loss of protein into the bulk phase. The surface pressure dependence of the growth of surfactant domains and the failure of the network were found to be the same for both Tween 20 and Tween 60, demonstrating that the breakdown of the protein film was dominated by the mechanical properties of the network. The displacement of protein by ionic surfactants was found to be characterized by nucleation of surfactant domains with little domain growth prior to failure of the network. The size of the domains formed by ionic surfactants was found to be limited by the strong intersurfactant repulsive forces between the charged headgroups. Screening of these charges led to an increase in the size of the domains. The surface pressure at which the network continuity was lost was found to be dependent on the type of surfactant and, in all cases, to occur at higher surface pressures than that required for nonionic surfactants. This has been attributed to surfactant-protein binding that initially strengthens the protein network at low surfactant concentrations. Evidence obtained from surface shear rheology supports this assertion.  相似文献   

18.
全氟辛酸(PFOA)是一种重要的全氟化表面活性剂,具有环境持久性、高毒性和生物累积性等特征,成为当前备受关注的新污染物。沉积物是PFOA的重要环境储蓄库,被污染后的沉积物可作为长期污染源造成上覆地表水及周边地下水污染。本文结合近年来国内外研究,对地表水和沉积物中PFOA的来源、污染现状和界面吸附迁移行为进行了综述。结果表明: 地表水体和沉积物中PFOA最主要的污染来源为工业废水排放。全球范围地表水体和沉积物中PFOA污染水平普遍为ng·g-1和ng·L-1数量级,且国内部分地区污染形势更为严峻。沉积物组分、水化学条件、有机质及表面活性剂等因素均影响沉积物中PFOA的吸附行为,但目前在吸附主控机制方面仍然存在争议。沉积物中PFOA迁移行为的研究正处于起步阶段,相关报导还较为缺乏,对于迁移机理的认识还很不足,今后需在该方面加大研究力度。  相似文献   

19.
The insolubility of carbon nanotubes (CNTs) in aqueous media has been a limitation for the practical application of this unique material. Recent studies have demonstrated that the suspend ability of CNT can be substantially improved by employing appropriate surfactants. Although various surfactants have been tested, the exact mechanism by which carbon nanotubes and the different surfactants interact is not fully understood. To deepen the understanding of molecular interaction between CNT and surfactants, as well as to investigate the influence of the surfactant tail length on the adsorption process, we report here the first detailed large-scale all-atomistic molecular dynamics simulation study of the adsorption and morphology of aggregates of the cationic surfactants containing trimethylammonium headgroups (C12TAB and C16TAB) on single-walled carbon nanotube (SWNT) surfaces. We find that the aggregation morphology of both C12TAB and C16TAB on the SWNT is dependent upon the number of the surfactants in the simulation box. As the number of the surfactants increases the random monolayer structure gradually changes to the cylinder-like monolayer structure. Moreover, we make a comparison between the C12TAB and C16TAB adsorption onto SWNTs to clarify the role of the surfactant tail length on the adsorption process. This comparison indicates that by increasing the number of surfactant molecules, the larger number of the C16TAB molecules tend to adsorb onto SWNTs. Further, our results show that a longer chain yields the higher packed aggregates in which the surfactant heads are extended far into the aqueous phase, which in turn may increase the SWNTs stabilization in aqueous suspensions.  相似文献   

20.
Skin is constantly exposed to surfactants which compromise the essential barrier function of normal healthy skin. To model the interactions of surfactants with the barrier lipids of the stratum corneum (SC), it is essential to develop in vitro and in vivo quantitative measurement methods to predict, evaluate, and demonstrate the effect of the different surfactant chemistries and technologies on skin. In the current work, in vitro water vapor uptake and surfactant absorption onto skin lipid model films were quantitatively studied using a technique based on the piezoelectric effect, the quartz crystal microbalance (QCM). This approach is straightforward and reliable in providing subtle surface/interface related mass change information with high resolution and sensitivity. The results show that barrier properties of the lipid model system may be damaged by surfactant absorption, as well as by long-term water exposure due to alterations to the lipid film structure. Surfactant absorption is found to be concentration dependent even beyond its critical micelle concentration (CMC). QCM results for different surfactant systems are consistent with reported clinical data in showing that clinically milder surfactants (SLES) do not perturb the film as much as clinically harsh surfactants (SDS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号