首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine deaminases that act on RNA (ADARs) are editing enzymes that convert adenosine to inosine in double-stranded RNA (dsRNA). ADARs sometimes target codons so that a single mRNA yields multiple protein isoforms. However, ADARs most often target noncoding regions of mRNAs, such as untranslated regions (UTRs). To understand the function of extensive double-stranded 3′ UTR structures, and the inosines within them, we monitored the fate of reporter and endogenous mRNAs that include structured 3′ UTRs in wild-type Caenorhabditis elegans and in strains with mutations in the ADAR genes. In general, we saw little effect of editing on stability or translatability of mRNA, although in one case an ADR-1 dependent effect was observed. Importantly, whereas previous studies indicate that inosine-containing RNAs are retained in the nucleus, we show that both C. elegans and Homo sapiens mRNAs with edited, structured 3′ UTRs are present on translating ribosomes.  相似文献   

2.
A global profile of germline gene expression in C. elegans   总被引:7,自引:0,他引:7  
  相似文献   

3.
Synthetic riboswitches gain increasing interest for controlling transgene expression in diverse applications ranging from synthetic biology, functional genomics, and pharmaceutical target validation to potential therapeutic approaches. However, existing systems often lack the pharmaceutically suited ligands and dynamic responses needed for advanced applications. Here we present a series of synthetic riboswitches for controlling gene expression through the regulation of alternative splicing. Placing the 5′-splice site into a stem structure of a tetracycline-sensing aptamer allows us to regulate the accessibility of the splice site. In the presence of tetracycline, an exon with a premature termination codon is skipped and gene expression can occur, whereas in its absence the exon is included into the coding sequence, repressing functional protein expression. We were able to identify RNA switches controlling protein expression in human cells with high dynamic ranges and different levels of protein expression. We present minimalistic versions of this system that circumvent the need to insert an additional exon. Further, we demonstrate the robustness of our approach by transferring the devices into the important research model organism Caenorhabditis elegans, where high levels of functional protein with very low background expression could be achieved.  相似文献   

4.
5.
Seidel HS  Kimble J 《PloS one》2011,6(12):e28074
Many animals alter their reproductive strategies in response to environmental stress. Here we have investigated how L4 hermaphrodites of Caenorhabditis elegans respond to starvation. To induce starvation, we removed food at 2 h intervals from very early- to very late-stage L4 animals. The starved L4s molted into adulthood, initiated oogenesis, and began producing embryos; however, all three processes were severely delayed, and embryo viability was reduced. Most animals died via 'bagging,' because egg-laying was inhibited, and embryos hatched in utero, consuming their parent hermaphrodites from within. Some animals, however, avoided bagging and survived long term. Long-term survival did not rely on embryonic arrest but instead upon the failure of some animals to produce viable progeny during starvation. Regardless of the bagging fate, starved animals showed two major changes in germline morphology: All oogenic germlines were dramatically reduced in size, and these germlines formed only a single oocyte at a time, separated from the remainder of the germline by a tight constriction. Both changes in germline morphology were reversible: Upon re-feeding, the shrunken germlines regenerated, and multiple oocytes formed concurrently. The capacity for germline regeneration upon re-feeding was not limited to the small subset of animals that normally survive starvation: When bagging was prevented ectopically by par-2 RNAi, virtually all germlines still regenerated. In addition, germline shrinkage strongly correlated with oogenesis, suggesting that during starvation, germline shrinkage may provide material for oocyte production. Finally, germline shrinkage and regeneration did not depend upon crowding. Our study confirms previous findings that starvation uncouples germ cell proliferation from germline stem cell maintenance. Our study also suggests that when nutrients are limited, hermaphrodites scavenge material from their germlines to reproduce. We discuss our findings in light of the recently proposed state of dormancy, termed Adult Reproductive Diapause.  相似文献   

6.
Recent studies in Caenorhabditis elegans implicate PcG- and NuRD-like chromatin regulators in the establishment and maintenance of germline-soma distinctions. Somatic cells appear to utilize NuRD-related nucleosome-remodeling factors to overwrite germline-specific chromatin states that are specified through PcG-like activities. The germline, in turn, may rely on an asymmetrically inherited inhibitor to prevent chromatin reorganization that would otherwise erase pluripotency.  相似文献   

7.
One hundred years after Weismann's seminal observations, the mechanisms that distinguish the germline from the soma still remain poorly understood. This review describes recent studies in Caenorhabditis elegans, which suggest that germ cells utilize unique mechanisms to regulate gene expression. In particular, mechanisms that repress the production of mRNAs appear to be essential to maintain germ cell fate and viability.  相似文献   

8.
9.
Certain aspects of the distal gonad of C. elegans are comparable to niche/stem cell systems in other organisms. The distal tip cell (DTC) caps a blind-ended tube; only the distal germ cells maintain proliferation in response to signaling from the DTC via the GLP-1/Notch signaling pathway in the germ line. Fruitful comparison between this system and other stem cell systems is limited by a lack of basic information regarding germ cell division behavior in C. elegans. Here, we explore the spatial pattern of cell division frequency in the adult C. elegans germ line relative to distance from the distal tip. We mapped the positions of actively dividing germline nuclei in over 600 fixed gonad preparations including the wild type and a gain-of-function ligand-responsive GLP-1 receptor mutant with an extended mitotic zone. One particularly surprising observation from these data is that the frequency of cell divisions is lower in distal-most cells-cells that directly contact the distal tip cell body-relative to cells further proximal, a difference that persists in the gain-of-function GLP-1 mutant. These results suggest that cell division frequency in the distal-most cells may be suppressed or otherwise controlled in a complex manner. Further, our data suggest that the presence of an active cell division influences the probability of observing simultaneous cell divisions in the same gonad arm, and that simultaneous divisions tend to cluster spatially. We speculate that this system behaves similarly to niche/stem cell/transit amplifying cell systems in other organisms.  相似文献   

10.
11.
12.
A possible origin of novel coding sequences is the removal of stop codons, leading to the inclusion of 3' untranslated regions (3' UTRs) within genes. We classified changes in the position of stop codons in closely related Saccharomyces species and in a mouse/rat comparison as either additions to or subtractions from coding regions. In both cases, the position of stop codons is highly labile, with more subtractions than additions found. The subtraction bias may be balanced by the input of new coding regions through gene duplication. Saccharomyces shows less stop codon lability than rodents, probably due to greater selective constraint. A higher proportion of 3' UTR incorporation events preserve frame in Saccharomyces. This higher proportion is consistent with the action of the [PSI(+)] prion as an evolutionary capacitor to facilitate 3' UTR incorporation in yeast.  相似文献   

13.
14.
15.
Members of the nanos gene family are evolutionarily conserved regulators of germ cell development. In several organisms, Nanos protein expression is restricted to the primordial germ cells (PGCs) during early embryogenesis. Here, we investigate the regulation of the Caenorhabditis elegans nanos homolog nos-2. We find that the nos-2 RNA is translationally repressed. In the adult germline, translation of the nos-2 RNA is inhibited in growing oocytes, and this inhibition depends on a short stem loop in the nos-2 3'UTR. In embryos, nos-2 translation is repressed in early blastomeres, and this inhibition depends on a second region in the nos-2 3'UTR. nos-2 RNA is also degraded in somatic blastomeres by a process that is independent of translational repression and requires the CCCH finger proteins MEX-5 and MEX-6. Finally, the germ plasm component POS-1 activates nos-2 translation in the PGCs. A combination of translational repression, RNA degradation, and activation by germ plasm has also been implicated in the regulation of nanos homologs in Drosophila and zebrafish, suggesting the existence of conserved mechanisms to restrict Nanos expression to the germline.  相似文献   

16.
17.
The mRNA surveillance system is known to rapidly degrade aberrant mRNAs that contain premature termination codons in a process referred to as nonsense-mediated decay. A second class of aberrant mRNAs are those wherein the 3' UTR is abnormally extended due to a mutation in the polyadenylation site. We provide several observations that these abnormally 3'-extended mRNAs are degraded by the same machinery that degrades mRNAs with premature nonsense codons. First, the decay of the 3'-extended mRNAs is dependent on the same decapping enzyme and 5'-to-3' exonuclease. Second, the decay is also dependent on the proteins encoded by the UPF1, UPF2, and UPF3 genes, which are known to be specifically required for the rapid decay of mRNAs containing nonsense codons. Third, the ability of an extended 3' UTR to trigger decay is prevented by stabilizing sequences within the PGK1 coding region that are known to protect mRNAs from the rapid decay induced by premature nonsense codons. These results indicate that the mRNA surveillance system plays a role in degrading abnormally extended 3' UTRs. Based on these results, we propose a model in which the mRNA surveillance machinery degrades aberrant mRNAs due to the absence of the proper spatial arrangement of the translation-termination codon with respect to the 3' UTR element as defined by the utilization of a polyadenylation site.  相似文献   

18.
Cell death genes are essential for apoptosis and other cellular events, but their nonapoptotic functions are not well understood. The midbody is an important cytokinetic structure required for daughter cell abscission, but its fate after cell division remains elusive in metazoans. In this paper, we show through live-imaging analysis that midbodies generated by Q cell divisions in Caenorhabditis elegans were released to the extracellular space after abscission and subsequently internalized and degraded by the phagocyte that digests apoptotic Q cell corpses. We further show that midbody degradation is defective in apoptotic cell engulfment mutants. Externalized phosphatidylserine (PS), an engulfment signal for corpse phagocytosis, exists on the outer surface of the midbody, and inhibiting PS signaling delayed midbody clearance. Thus, our findings uncover a novel function of cell death genes in midbody internalization and degradation after cell division.  相似文献   

19.
DNA synthesis and the control of embryonic gene expression in C. elegans   总被引:9,自引:0,他引:9  
L G Edgar  J D McGhee 《Cell》1988,53(4):589-599
DNA synthesis in each cell lineage of the early C. elegans embryo was measured using microspectrofluorimetry. Aphidicolin was shown to inhibit DNA synthesis almost instantly and completely. Aphidicolin was then used to investigate how DNA synthesis controls expression of two biochemical markers that appear at different times during gut development: gut granules and a carboxylesterase. We show that marker expression is controlled neither by reaching the normal DNA: cytoplasm ratio, by counting the normal number of rounds of DNA synthesis, nor by a simple lengthening of the cell cycle. Instead, expression of both gut markers requires a short period of DNA synthesis in the first cell cycle after the gut has been clonally established.  相似文献   

20.
Gene batteries are sets of coregulated genes with common cis-regulatory elements that define the differentiated state of a cell. The nature of gene batteries for individual neuronal cellular subtypes and their linked cis-regulatory elements is poorly defined. Through molecular dissection of the highly modular cis-regulatory architecture of individual neuronally expressed genes, we have defined a conserved 16 bp cis-regulatory motif that drives gene expression in a single interneuron subtype, termed AIY, in the nematode Caenorhabditis elegans. This motif is bound and activated by the Paired- and LIM-type homeodomain proteins CEH-10 and TTX-3. Using genome-wide phylogenetic footprinting, we delineated the location, distribution, and evolution of AIY-specific cis-regulatory elements throughout the genome and thereby defined a large battery of AIY-expressed genes, all of which represent direct Paired/LIM homeodomain target genes. The identity of these homeodomain targets provides novel insights into the biology of the AIY interneuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号