首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ability to switch between yeast and hyphal morphologies is an important virulence factor for the opportunistic pathogen Candida albicans. Although the kinetics of appearance of the filamentous ring that forms at the incipient septum differ in yeast and cells forming hyphae (germ tubes) (), the molecular mechanisms that regulate this difference are not known. Int1p, a C. albicans gene product with similarity in its C terminus to Saccharomyces cerevisiae Bud4p, has a role in hyphal morphogenesis. Here we report that in S. cerevisiae, Int1p expression results in the growth of highly polarized cells with delocalized chitin and defects in cytokinesis and bud-site selection patterns, phenotypes that are also seen in S. cerevisiae septin mutant strains. Expression of high levels of Int1p in S. cerevisiae generated elaborate spiral-like structures at the periphery of the polarized cells that contained septins and Int1p. In addition, Int1p coimmunoprecipitated with the Cdc11p and Cdc12p septins, and Cdc12p is required for the establishment and maintenance of these Int1p/septin spirals. Although Swe1p kinase contributes to INT1-induced filamentous growth in S. cerevisiae, it is not required for the formation of ectopic Int1p/septin structures. In C. albicans, Int1p was important for the axial budding pattern and colocalized with Cdc3p septin in a ring at the mother-bud neck of yeast and pseudohyphal cells. Under conditions that induce hyphae, both Cdc3p and Int1p localized to a ring distal to the junction of the mother cell and germ tube. Thus, placement of the Int1p/septin ring with respect to the mother-daughter cell junction distinguishes yeast/pseudohyphal growth from hyphal growth in C. albicans.  相似文献   

3.
4.
5.
6.
7.
8.
The opportunistic fungal pathogen Candida albicans can grow as yeast, pseudohyphae or true hyphae. C. albicans can switch between these morphologies in response to various environmental stimuli and this ability to switch is thought to be an important virulence trait. In Saccharomyces cerevisiae, the Grr1 protein is the substrate recognition component of an SCF ubiquitin ligase that regulates cell cycle progression, cell polarity and nutrient signaling. In this study, we have characterized the GRR1 gene of C. albicans. Deletion of GRR1 from the C. albicans genome results in a highly filamentous, pseudohyphal morphology under conditions that normally promote the yeast form of growth. Under hypha-inducing conditions, most cells lacking GRR1 retain a pseudohyphal morphology, but some cells appear to switch to hyphal-like growth and express the hypha-specific genes HWP1 and ECE1. The C. albicans GRR1 gene also complements the elongated cell morphology phenotype of an S. cerevisiae grr1Delta mutant, indicating that C. albicans GRR1 encodes a true orthologue of S. cerevisaie Grr1. These results support the hypothesis that the Grr1 protein of C. albicans, presumably as the F-box subunit of an SCF ubiquitin ligase, has an essential role in preventing the switch from the yeast cell morphology to a pseudohyphal morphology.  相似文献   

9.
10.
11.
We have studied the roles of polyubiquitin in Candida albicans physiology. Heterologous expression of the C. albicans polyubiquitin (UBI4) gene in a ubi4 Saccharomyces cerevisiae strain suppressed the mutant phenotype (hypersensitivity to heat shock). A heterozygous strain UBI4/Deltaubi4::hisG, obtained following the ura-blaster procedure, was used to construct a conditional mutant using a pCaDis derivative plasmid. By serendipity we isolated the UBI4 conditional mutant as well as a UBI4 mutant containing a non-functional MET3 promoter. Depletion of polyubiquitin conferred pleiotropic effects to mutant cells: (i) a limited increased sensitivity to mild heat shock; (ii) increased formation of colony morphology variants; and (iii) induction of hyphal and pseudohypal development. These results indicate that polyubiquitin in C. albicans is involved in the negative control of switching, as well as in maintaining the yeast cell morphology, probably by silencing mechanisms triggering the hyphal and pseudohyphal development in the absence of environmental inducers.  相似文献   

12.
白念珠菌的致病性与其形态转变相关,白念珠菌的形态转换受各种外界信号和细胞内信号转导途径的调控。转录因子Flo8在酿酒酵母形态发生中起重要作用,我们将白念珠菌基因组文库导入flo8缺失株中,筛选能够校正flo8缺失株侵入生长缺陷的基因,分离得到一个与酿酒酵母蛋白磷酸酯酶甲基酯酶PPEl同源的基因,命名为CaPPEl。CaPPEl的基因编码区全长1083bp,推测编码一个361氨基酸的蛋白。在单倍体酿酒酵母中,CaPPEl基因的表达可以部分回复flo8缺失株的侵入生长缺陷,但是在MAPK途径缺失株中不能进行侵入生长。在双倍体酿酒酵母中,CaPPEl基因的表达可以部分激活MAPK途径成员缺失株的菌丝生长缺陷,但却只能在flo8缺失株中产生微弱的激活作用。结果表明CaPpel在酿酒酵母的假菌丝生长和侵入生长中参与的信号转导途径不同。  相似文献   

13.
A hyphally regulated gene (HYR1) from the dimorphic human pathogenic fungus Candida albicans was isolated and characterized. Northern (RNA) analyses showed that the HYR1 mRNA was induced specifically in response to hyphal development when morphogenesis was stimulated by serum addition and temperature elevation, increases in both culture pH and temperature, or N-acetylglucosamine addition. The HYR1 gene sequence revealed a 937-codon open reading frame capable of encoding a protein with an N-terminal signal sequence, a C-terminal glycosylphosphatidylinositol-anchoring domain, 17 potential N glycosylation sites, and a large domain rich in serine and threonine (51% of 230 residues). These features are observed in many yeast cell wall proteins, but no homologs are present in the databases. In addition, Hyr1p contained a second domain rich in glycine, serine, and asparagine (79% of 239 residues). The HYR1 locus in C. albicans CAI4 was disrupted by "Ura-blasting," but the resulting homozygous delta hyr1/delta hyr1 null mutant displayed no obvious morphological phenotype. The growth rates for yeast cells and hyphae and the kinetics of germ tube formation in the null mutant were unaffected. Aberrant expression of HYR1 in yeast cells, when an ADH1-HYR1 fusion was used, did not stimulate hyphal formation in C. albicans or pseudohyphal growth in Saccharomyces cerevisiae. HYR1 appears to encode a nonessential component of the hyphal cell wall.  相似文献   

14.
15.
16.
Candida albicans is the most frequently isolated fungus in immunocompromised patients associated with mucosal and deep-tissue infections, To investigate the correlation between virulence and resistance on a gene expression profile in C. albicans, we examined the changes in virulence-related genes during the development of resistance in C, albicans from bone marrow transplant patients using a constructed cDNA array representing 3096 unigenes. In addition to the genes known to be associated with azole resistance,16 virulence-related genes were identified, whose differential expressions were newly found to be associated with the resistant phenotype. Differential expressions for these genes were confirmed by RT-PCR independently. Furthermore, the up-regulation of EFG1, CPH2, TEC1, CDC24, SAP10, ALS9, SNF1, SP072 and BDF1, and the down-regulation of RAD32, IPF3636 and UB14 resulted in stronger virulence and invasiveness in the resistant isolates compared with susceptible ones. These findings provide a link between the expression of virulence genes and development of resistance during C. albicans infection in bone marrow transplant (BMT) patients, where C. albicans induces hyphal formation and expression change in multiple virulence factors.  相似文献   

17.
Transcriptional control of dimorphism in Candida albicans.   总被引:13,自引:0,他引:13  
  相似文献   

18.
Three distinct secreted aspartyl proteinases in Candida albicans.   总被引:16,自引:3,他引:13       下载免费PDF全文
The secreted aspartyl proteinases of Candida albicans (products of the SAP genes) are thought to contribute to virulence through their effects on Candida adherence, invasion, and pathogenicity. From a single strain of C. albicans (WO-1) which expresses a phenotypic switching system, three secreted aspartyl proteinases have been identified as determined by molecular weight and N-terminal sequence. Each of the three identified proteins represents the mature form of one of three distinct proteinase isoenzymes, two of which correspond to the recently cloned SAP1 and SAP2 genes (previously referred to as CAP, PEP, or PRA). A genomic library was screened under low-stringency hybridization conditions with a polymerase chain reaction fragment from SAP1. In addition to clones of SAP1 and SAP2, a clone containing SAP3, a novel third secreted proteinase gene, was identified and sequenced. The three aspartyl proteinase isoenzymes differ in primary sequence and pI, suggesting that they may play different roles in virulence and pathogenesis. All three of these proteinases are expressed in the same strain. However, the pattern of proteinase expression is correlated with the switch phenotype of the cell. Opaque cells of strain WO-1 express Sap1 and Sap3, while white cells of the same strain express Sap2. The differential expression of three Sap proteinases may contribute to virulence in C. albicans.  相似文献   

19.
20.
Prolyl-isomerases (PPIases) are found in all organisms and are important for the folding and activity of many proteins. Of the 13 PPIases in Saccharomyces cerevisiae only Ess1, a parvulin-class PPIase, is essential for growth. Ess1 is required to complete mitosis, and Ess1 and its mammalian homolog, Pin1, interact directly with RNA polymerase II. Here, we isolate the ESS1 gene from the pathogenic fungus Candida albicans and show that it is functionally homologous to the S. cerevisiae ESS1. We generate conditional-lethal (ts) alleles of C. albicans ESS1 and use these mutations to demonstrate that ESS1 is essential for growth in C. albicans. We also show that reducing the dosage or activity of ESS1 blocks morphogenetic switching from the yeast to the hyphal and pseudohyphal forms under certain conditions. Analysis of double mutants of ESS1 and TUP1 or CPH1, two genes known to be involved in morphogenetic switching, suggests that ESS1 functions in the same pathway as CPH1 and upstream of or in parallel to TUP1. Given that switching is important for virulence of C. albicans, inhibitors of Ess1 might be useful as antifungal agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号