首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrogenic sodium bicarbonate cotransporter (NBCe1) is expressed in many epithelial cells and, in the brain, in glial cells. Little is known about the physiological significance of the NBCe1 for proton homeostasis and for other acid/base-coupled transporters in these cells. We have measured the voltage-dependent transport activity of an NBC from human kidney, type hkNBCe1, expressed in oocytes of the frog Xenopus laevis, by recording membrane current and the changes in intracellular pH and sodium at different membrane potentials between -20 and -100 mV. The apparent intracellular buffer capacity was increased and became dependent upon membrane voltage when the NBCe1 was expressed; the measured buffer capacity increased by up to 7 mm/10 mV of membrane depolarization. Lactate transport by the electroneutral monocarboxylate transporter became enhanced and dependent upon membrane potential, when the monocarboxylate transporter (isoform 1) was co-expressed with NBCe1 in oocytes. Our results indicate that the electrogenic NBCe1 renders the cell membrane potential an effective regulator of intracellular H(+) buffering and acid/base-coupled metabolite transport.  相似文献   

2.
The role of Na+ in glutamate transport was studied in Escherichia coli B, strain 29-78, which possesses a very high activity of glutamate transport (L. Frank and I. Hopkins, J. Bacteriol., 1969). Energy-depleted cells were exposed to radioactive glutamate in the presence of a sodium gradient, a membrane potential, or both. One hundred- to 200-fold accumulation of the amino acid was attained in the presence of both electrical and chemical driving forces for the sodium ion. Somewhat lower accumulation values were obtained when either chemical or electrical driving forces were applied separately. A chemical driving force was produced by the addition of external Na+ to Na+-free cells. A membrane potential was established by a diffusion potential either of H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone or of SCN-. These results support the hypothesis of a Na+-glutamate cotransport. Na+-driven glutamate transport was also observed in wild-type E. coli B but not in a strain of K-12.  相似文献   

3.
Electrogenic Cl- pump in Acetabularia   总被引:1,自引:0,他引:1  
Measurements of this transmembrane potential difference (V) under various conditions have demonstrated the operation of an electrogenic Cl- pump in the outer plasma membrane (plasmalemma) of the unicellular marine alga Acetabularia. In preparations of partly purified membranes (containing plasmalemma), there is Cl- stimulated, N,N'-dicyclohexylcarbodiimide-insensitive, vanadate-sensitive ATPase activity with a pH optimum around pH 6.5. These properties are consistent with the assumption that the electrogenic Cl- pump is an ATPase. In order to investigate electrical details of the "Mitchellian" type of charge-translocating enzyme, steady-state current-voltage curves of the electrogenic pump (Ip(V)) were measured in vivo under dark and light conditions and analysed by two-state reaction kinetic model. This model with the resulting parameters predicts V-sensitive, undirectional Cl- effluxes through the pump. The predictions of this model agree with the experimental results. Green light causes a fast decrease of V, which is explained as a disturbance of the pump cycle. Relaxation studies on this effect and reaction kinetic analysis of Ip(V) under different external Cl- concentrations are used to develop a consistent three-state model of the pump that includes the order of and absolute rate constants of individual reactions, states of charge, stoichiometry, voltage-sensitivity and density of the pump molecules in the membrane.  相似文献   

4.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

5.
Initial velocity of uptake of dopamine (DA) has been measured in rat striatal synaptosomes as a function of both [DA] and [Na]. Carrier mediated uptake is totally dependent on external sodium. The data were fitted to a rapid equilibrium model which has been found in previous studies to fit, with appropriate simplification, uptake data for glutamate, GABA, and choline in several brain regions under varying conditions. This model also gives a good fit to the dopamine data. The minimal best fit simplification of this model allows for DA uptake along with two sodium ions and predicts that apparent maximal velocity of uptake should increase with [Na], while the Michaelis-Menten constant should decrease. The minimal best fit model for DA, and a number of kinetic parameters which quantitate the model, are compared to those for the GABA, glutamate, and choline transporters. The results are consistent with a symmetrical, rapid equilibrium model, which has been presented previously for other neurotransmitters and precursors (18). This model offers a unifying basis for understanding the sodium and membrane potential dependence of neurotransmitter transport and the possible participation of transporters in depolarization induced release throughout the CNS.  相似文献   

6.
A functional model for the aspartate/glutamate carrier of the inner mitochondrial membrane was established based on a kinetic evaluation of this transporter. Antiport kinetics were measured in proteoliposomes that contained partially purified carrier protein of definite transmembrane orientation (Dierks, T. and Kr?mer, R. (1988) Biochim. Biophys. Acta 937, 122-126). Bireactant initial velocity analyses of the counterexchange reaction were carried out varying substrate concentrations both in the internal and the external compartment. The kinetic patterns obtained were inconsistent with a pong-pong mechanism; rather they demonstrated the formation of a ternary complex as a consequence of sequential binding of one internal and one external substrate molecule to the carrier. Studies on transport activity in the presence of aspartate and glutamate in the same compartment (formally treated as substrate inhibition) clearly indicated that during exchange only one form of the carrier at either membrane surface exposes its binding sites, for which the two different substrates compete. In the deenergized state (pH 6.5) both substrates were translocated at about the same rate. Aspartate/glutamate antiport became asymmetric if a membrane potential was imposed, due to the electrogenic nature of the heteroexchange resulting from proton cotransport together with glutamate. Investigation of the electrical properties of aspartate/aspartate homoexchange led to the conclusion that the translocating carrier-substrate intermediate exhibits a transmembrane symmetry with respect to the (negative) charge, which again only is conceivable assuming a ternary complex. Thus, an antiport model is outlined that shows the functional complex of the carrier with two substrate molecules bound, one at either side of the membrane. The conformational change associated with the transition of both substrate molecules across the membrane then occurs in a single step. Furthermore the model implicates a distinct proton binding site, which is derived from the different influence of H+ concentration observed on transport affinity and transport velocity, respectively, when glutamate is used as a substrate.  相似文献   

7.
On the mechanism of spiking and bursting in excitable cells   总被引:1,自引:0,他引:1  
A mathematical model previously developed to explain beta-cell membrane potential oscillations has been modified to accommodate the external variation of K+, Na+ and Ca2+ concentrations. Our model, which is applicable to excitable cells, incorporates the barrier kinetics. Hodgkin-Huxley-type gating mechanism, and an electrogenic Na+-K+ pump. Numerical solutions of our model are in agreement with many of the experimental results reported in the literature on excitable cells.  相似文献   

8.
The voltage dependence of the kinetics of the sodium bicarbonate cotransporter was studied in proximal tubule cells. This electrogenic cotransporter transports one Na+, three HCO3-, and two negative charges. Cells were grown to confluence on a permeable support, mounted on a Ussing-type chamber, and permeabilized apically to small monovalent ions with amphotericin B. The steady-state, di-nitro-stilbene-di-sulfonate-sensitive current was shown to be sodium and bicarbonate dependent and therefore was taken as flux through the cotransporter. Voltage-current relations were measured as a function of Na+ and HCO3- concentrations between -160 and +160 mV under zero-trans and symmetrical conditions. The kinetics could be described by a Michaelis-Menten behavior with a Hill coefficient of 3 for HCO3- and 1 for Na+. The data were fitted to six-state ordered binding models without restrictions with respect to the rate-limiting step. All ordered models could quantitatively account for the observed current-voltage relationships and the transinhibition by high bicarbonate concentration. The models indicate that 1) the unloaded transporter carries a positive charge; 2) the binding of cytosolic bicarbonate to the transporter "senses" 12% of the electric field in the membrane, whereas its translocation across the membrane "senses" 88% of the field; 3) the binding of Na+ to the cotransporter is voltage independent.  相似文献   

9.
1. The fluorescent intensity of the dye 3,3'-dipropylthiodicarbocyanine iodide was measured in suspensions of Ehrlich ascites tumor cells in an attempt to monitor their membrane potentials under a variety of different ionic and metabolic conditions. 2. In the presence of valinomycin, fluorescent intensity is dependent on log [K+]medium (the fluorescent intensity increased with increasing [K+]medium) where K+ replaced Na+ in the medium. Cellular K+ content also influenced fluorescent intensity in the presence of valinomycin. With lower cellular K+, fluorescent intensity in the presence of valinomycin for any given concentration was increased. 3. In the presence of gramicidin fluorescent intensity was highest in Krebs-Ringer and decreased with the substitution of choline+ for Na+. 4. The observations with ionophores are consistent with the hypothesis that the dye monitors membrane potential in these cells with an increase in fluorescence indicating membrane depolarization (internal becomes more positive). 5. The estimated membrane potentials were influenced by the way in which the cells were treated. Upon dilution of the cells from 1 in 20 to 1 in 300 the initial estimations were between -50 and -60 mV. With incubation at 1 in 300 dilution for 1 h at room temperature or a 37 degrees C, the membrane potentials ranged from -18 to -42 mV. 6. Estimations of membrane potential on the basis of chloride distribution (Cl-cell/Cl-medium) in equilibrated cells ranged from -13 to -32 mV. 7. Addition of glucose to cells equilibrated at 37 degrees C for 30 min in the presence of rotenone led to a decrease in fluorescent intensity indicating hyperpolarization. Addition of ouabain in turn led to a 70 to 100% reversal of fluorescent intensity. This hyperpolarization is therefore probably due to the electrogenic activity of the sodium pump. 8. The addition of amino acids known to require external Na+ for transport increased fluorescent intensity (depolarization) reaching a maximum at higher concentrations of amino acids. Plots of 1/deltafluorescence vs. 1/[glycine] were linear with an apparent Km of 2-3 mM. The increase in fluorescence with amino acids always required external Na+. Plots of 1/fluorescence vs. 1/[Na+]medium were also linear with an apparent Km of 29 mM. These apparent Km values compare favorably with those derived from amino acid transport studies using tracers. These data indicate that the Na+-dependent transport of amino acids in these cells is electrogenic.  相似文献   

10.
In this pedagogical article the causal theory of the resting potential of cells is presented, which for given extracellular ion concentrations predicts the intracellular ones simultaneously with the resting potential. In addition to the Na, K-pump, fixed charges on the membrane surfaces are taken into account. The equation determining the resting potential in the causal theory suggests a new explanation of the genesis of the resting potential. The usual criterion for an ion pump to be electrogenic is not relevant for the whole of the resting potential, and may therefore be misleading. The physical meaning of the Goldman-Hodgkin-Katz formula for the membrane potential as a diffusion potential is also explained and tested with numbers for the giant axon of the squid. A significant discrepancy between theory and experiment is found which calls for an experimental re-examination of the constitutive equations for passive potassium and sodium currents.  相似文献   

11.
The substrate-binding sites in membrane transporters are alternately accessible from either side of the membrane, but the molecular basis of how this alternate opening of internal and external gates is achieved is largely unknown. Here we present data indicating that, in the neuronal electrogenic sodium- and potassium-coupled glutamate transporter EAAC-1, the substrate-binding site and one of the gates, or a residue controlling the gating process, are in close physical proximity. Arginine 445, located only two residues away from a residue implicated in glutamate binding (Bendahan, A., Armon, A., Madani, N., Kavanaugh, M. P., and Kanner, B. I. (2000) J. Biol. Chem. 275, 37436-37442), has been mutated to serine (R445S). Upon expression in oocytes, measurements of l-[(3)H]-glutamate transport under voltage clamp reveal that the charge/flux ratio for l-glutamate at -60 mV is approximately 30-fold higher than that of the wild type. Also, with d-aspartate, R445S exhibits an approximately 15-fold increase in this ratio. In contrast to the wild type, the reversal potential of the substrate-dependent currents in R445S shifts to more negative potentials when either the external sodium or potassium concentration is decreased. These findings indicate that these two cations are the main current carriers in the R445S mutant. Introduction of a methionine or a glutamine, but not a lysine, at position 445 gives rise to a phenotype similar to R445S. Therefore, it seems that the elimination of a positive charge in the vicinity of the substrate-binding site converts the transporter into a glutamate-gated cation-conducting pathway.  相似文献   

12.
A mathematical model for amino acid uptake by membrane vesicles is described which includes two components, a Na+ dependent and a Na+ independent system. Uptake in the model is a function of both initial external Na+ and amino acid concentrations. Sodium dependence of amino acid transport in the model is manifested by changing affinity constants for amino acid uptake under different Na+ concentrations. The differing affinities for influx and efflux caused by increasing internal Na+ concentrations with time during transport incubations result in an “overshoot” for amino acid accumulation. For inwardly directed Na+ gradients, the model predicts the dependence of the occurrence of the overshoot on initial external substrate concentration and the dependence of the height of the overshoot on initial external Na+ concentration. This model has been used to describe experimental data on proline uptake by rat renal brushborder membrane vesicles.  相似文献   

13.
Fresh-water plants generate extraordinarily high electric potential differences at the plasma membrane. For a deeper understanding of the underlying transport processes a mathematical model of the electrogenic plasmalemma ion transport was developed based on experimental data mainly obtained from Egeria densa. The model uses a general nonlinear network approach and assumes coupling of the transporters via membrane potential. A proton pump, an outward-rectifying K+ channel, an inward-rectifying K+ channel, a Cl channel and a (2H-Cl)+ symporter are considered to be elements of the system. The model takes into consideration the effects of light, external pH and ionic content of the bath medium on ion transport. As a result it does not only satisfactorily describe the membrane potential as a function of these external physiological factors but also succeeds in simulating the effects of specific inhibitors as well as I-V-curves obtained with the patch-clamp technique in the whole cell mode. The quality of the model was checked by stability and sensitivity analyses. Received: 18 March 1996/Revised: 17 July 1996  相似文献   

14.
Monoclonal antibodies which interact with the mammalian Na+/D-glucose cotransporter and bind to Mr 75,000 and Mr 47,000 polypeptide components of this transporter have been described (Koepsell, H., Korn, K., Raszeja-Specht, A., Bernotat-Danielowski, S. and Ollig, D. (1988) J. Biol. Chem., 263, 18419-18429). The interaction of these antibodies with plasma membranes from Zea mays L. coleoptiles containing an H+/D-glucose cotransporter was studied. Four monoclonal antibodies cross-reacted with Mr 75,000 and Mr 33,000 polypeptides. One of these antibodies, which inhibits Na+/D-glucose cotransport in the kidney and stimulates Na+/D-glucose cotransport in intestine, stimulates electrogenic uptake of 3-O-methyl-D-[14C]glucose in plant membrane vesicles. The data indicate common epitopes in the mammalian Na+/D-glucose cotransporter and the H+/D-glucose cotransporter of plants and suggest that both transporters contain an Mr 75000 polypeptide component.  相似文献   

15.
The effects of the arginine-modifying reagent phenylglyoxal on the kinetics of the type IIa Na + /Pi cotransporter expressed in Xenopus, oocytes were studied by means of 32Pi uptake and electrophysiology. Phenylglyoxal incubation induced up to 60% loss of cotransport function but only marginally altered the Na+-leak. Substrate activation and pH dependency remained essentially unaltered, whereas the voltage dependency of Pi-induced change in electrogenic response was significantly reduced. Presteady-state charge movements were suppressed and the equilibrium charge distribution was shifted slightly towards hyperpolarizing potentials. Charge movements in the absence of external Na+ were also suppressed, which indicated that the empty-carrier kinetics were modified. These effects were incorporated into an ordered alternating access model for NaPi-IIa, whereby the arginine modification by phenylglyoxal was modeled as altered apparent electrical distances moved by mobile charges, together with a slower rate of translocation of the electroneutral, fully loaded carrier.  相似文献   

16.
The uptake mechanism for the bile salt, taurocholate, by the liver cell is coupled to sodium but the stoichiometry is controversial. A one-to-one coupling ratio would result in electroneutral transport, whereas cotransport of more than one sodium ion with each taurocholate molecule cause an electrogenic response. To better define the uptake of this bile salt, we measured the effect of taurocholate on the membrane potential and resistance of isolated rat hepatocytes using conventional microelectrode electrophysiology. The addition of 20 microM taurocholate caused transient but significant depolarization accompanied by a significant decrease in membrane resistance. The electrical effect induced by taurocholate mimicked that induced by L-alanine (10 mM), the uptake of which is known to occur through an electrogenic, sodium-coupled mechanism. The sodium dependence of taurocholate-induced depolarization was further confirmed by: (1) replacing Na+ with choline +, and (2) preincubating cells with ouabain (2 mM) or with the Na+-ionophore, gramicidin (25 micrograms/ml); both suppressed the electrogenic response. Further, cholic acid, which inhibits sodium-coupled taurocholate uptake in hepatocytes, inhibited taurocholate evoked depolarization. These results support the hypothesis that sodium-coupled taurocholate uptake by isolated hepatocytes occurs through an electrogenic process which transports more than one Na+ with each taurocholate molecule.  相似文献   

17.
We re-examined the electrical and stoichiometric properties of the Na+-L-lactate cotransporter using highly purified brush-border membrane vesicles prepared from the whole cortex of rabbit kidney. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated Na+ gradient-dependent L-lactate uptake. However, this stimulation reflected catalytic rather than energetic activation as an inside-negative membrane potential did not induce net uphill lactate accumulation in the presence of Na+ but in the absence of a Na+ concentration gradient. Additional evidence for electroneutrality of the cotransporter was the finding that, under voltage-clamped conditions, L-lactate flux was a hyperbolic function of extravesicular Na+ concentration with a Hill coefficient (n) of 1.0. Moreover, the plot of V/[Na+]n versus V was linear for n = 1, indicating that one Na+ ion is co-transported with an anionic lactate1- molecule. Finally, addition of L-lactate to vesicles under Na+ equilibrium conditions failed to generate an inside-positive membrane potential as monitored by 3,3'-dipropylthiodicarbocyanine iodide fluorescence quenching, arguing against Na+-L-lactate cotransport by an electrogenic process. Taken together, these data indicate that the luminal Na+-L-lactate co-transporter is electroneutral with a stoichiometry of 1.  相似文献   

18.
Glial strategy for metabolic shuttling and neuronal function   总被引:1,自引:0,他引:1  
Glial cells serve a variety of functions in nervous systems, some of which are activated by neurotransmitters released from neurons. Glial cells respond to these neurotransmitters via receptors, but also take up some of the transmitters to help terminate the synaptic process. Among these, glutamate uptake by glial cells is pivotal to avoid transmitter-mediated excitotoxicity. Here, a new model is proposed in which glutamate uptake via the excitatory amino acid transporter (EAAT) is functionally coupled to other glial transporters, in particular the sodium-bicarbonate cotransporter (NBC) and the monocarboxylate transporter (MCT), as well as other glial functions, such as calcium signalling, a high potassium conductance and CO(2) consumption. The central issue of this hypothesis is that the shuttling of sodium ions and acid/base equivalents, which drive the metabolite transport across the glial membrane, co-operate with each other, and hence save energy. As a result, glutamate removal from synaptic domains and lactate secretion serving the energy supply to neurons would be facilitated and could operate with greater capacity.  相似文献   

19.
Sodium transport was measured in brush-border membrane vesicles prepared from kidney cortex of the Milan hypertensive strain (MHS) rats and the corresponding normotensive controls. In the presence of an outwardly directed proton gradient, 22Na was transiently accumulated in the vesicles. When a transmembrane electrical potential was imposed across membrane vesicles, both the accumulation ratio and the initial uptake were increased, indicating the presence of an electrogenic pathway for sodium in these membranes. The potential-dependent sodium uptake was significantly higher in MHS rats. Kinetic analysis give simple Michaelis Menten curves in the presence and in the absence of a membrane potential. In both conditions Jmax was significantly increased in MHS rats, whereas Km was the same for the two rat strains. Sodium uptake was inhibited by amiloride at concentrations that inhibit Na+-H+ exchange. The presence of the higher, potential-sensitive, sodium uptake in MHS is in agreement with studies on renal physiology which support the hypothesis that an increase in tubular sodium reabsorption may be the primary cause for the development of hypertension in this rat strain.  相似文献   

20.
The accumulation ratio of a permeant cation under steady-state conditions after active uptake, is defined as: ({cati}{cat0})1z, where Z is the valence of the cation, and {cati} and {cat0} are the internal and external cation activities, respectively. The electrogenic proton pump predicts that the accumulation ratio should be independent of (i) the chemical structure of the cation and (ii) the degree of permeability of the membrane to cations. Furthermore the accumulation ratio should be the same for all permeant cation species simultaneously present. In the present study it is found that under steady-state conditions: (i) the accumulation ratio is not the same for potassium in the presence of valinomycin, for tetrapropylammonium in the presence of tetraphenylboron, and for calcium in the presence of acetate; (ii) the accumulation ratio is not identical for two cations such as potassium and sodium present simultaneously in the presence of gramicidin; (iii) the accumulation ratio is dependent on the external carrier concentration, such as valinomycin or tetraphenylboron. It is concluded that the cation distribution ratios under steady-state conditions are not compatible with the predictions of the electrogenic proton pump model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号