首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to drug addiction and the emergence of antibiotic resistance in pathogens, the disease load and medication intake have risen worldwide. The alternative treatment for drug-resistant infections is Nano formulation-based antimicrobial agents. The plant extract of Conocarpus Lancifolius fruits was used to synthesize silver nanoparticles in the current study, and it was further employed as an antimicrobial and anticancer agent. Nanoparticles have been characterized by UV–visible spectrometer revealed the notable peak of λmax = 410–442 nm, which confirms the reduction of silver ion to elemental silver nanoparticles, and the biological moieties in the synthesis were further confirmed by FTIR analysis. The stability and crystalline nature of materials were approved by XRD analysis and expected the size of the nanomaterials of 21 to 173 nm analyzed by a nanophox particle-size analyzer. In vitro, synthesized materials act as an antibacterial agent against Streptococcus pneumonia and Staphylococcus aureus. The inhibition zones of 18 and 24 mm have been estimated to be antibacterial activity against both bacteria. The potency of up to 100% of AgNPs for bacterial strains was incubated overnight at 60 μg/ml. Based on our results, biogenic AgNPs reveal significant activity against fungal pathogen Rhizopusus stolonifera and Aspergillus flavus that cause leading infectious diseases. Additionally, nanomaterials were biocompatible and demonstrated the potential anticancer activities against MDA MB-231 cells after 24-hour exposure.  相似文献   

2.
Silver nanoparticles (AgNPs) are gaining considerable importance due to their attractive physicochemical properties for many applications. In the present study, (Ag NPs) were synthesized by the reduction of aqueous solutions of silver nitrate (AgNO3) with powder and solvent extracts of Padina pavonia (brown algae). The obtained nanoparticles exhibited high stability, rapid formation of the biogenic process (2 min -3 h), small size (49.58–86.37 nm) (the diameter of formed nanoparticles was measured by TEM and DLS) and variable shapes (spherical, triangular, rectangle, polyhedral and hexagonal). Preliminary characterization of nanoparticles was monitored by using UV–visible spectroscopy (UV–vis), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and finally by Fourier Transform Infrared spectroscopy (FTIR). The ratios of converted Ag NPs were recorded as 88.5; 86.2 and 90.5% in case of P. pavonia powder. extract and chloroform extract, respectively.  相似文献   

3.
The present work illustrates eco-friendly, rapid and cost effective method of AgNPs synthesis using C. pulcherrima stem extract. Initially, various physico chemical factors were optimized. Characterization was done by different spectroscopic and microscopic analysis. AgNPs were spherical in shape with an average size of 8?nm. AgNPs showed good synergistic antimicrobial, antibiofilm and antioxidant activity. The cytotoxicity effect against HeLa cancer cell line was dose dependent while genotoxic study revealed the non toxic nature of AgNPs at lower concentration. The results suggest that AgNPs from C. pulcherrima stem extract have great potential in biomedical applications.  相似文献   

4.
Silver nanoparticles (AgNPs) have attracted the attention of researchers because of their unique properties and applications in various fields, such as medicine, catalysis, textile engineering, and pollution treatment. The green synthesis of AgNPs has many advantages, such as less time requirement, highly stable AgNPs, better control over crystal growth, morphology, ease for scale up, and economic viability. Syzygium aromaticum (clove) was used for the extracellular biosynthesis of AgNPs. Eugenols are the active biomolecules present in clove, responsible for the bioreduction of AgNO3 (Ag+) leading to the formation and capping of AgNPs (Ag0). One molecule of eugenol releases two electrons and these two electrons will be taken by 2 Ag+ ions and these will get reduced to 2 Ag0. The synthesis of AgNPs was confirmed by the appearance of brown colour. The synthesized AgNPs were characterised by various techniques, such as UV-VIS spectroscopy, transmission electron microscopy, X-ray diffraction and Fourier transformed infrared spectroscopy. The synthesised AgNPs have λ max of 440 nm. It was evaluated that the AgNPs were biphasic in nature (cubic + hexagonal) with an average size of 50.0 nm. The synthesized AgNPs showed significant antimicrobial activity against Bacillus cereus NCDC 240 as they are nano-sized and have high surface area to volume ratio. AgNPs inhibit the growth of bacteria by various ways, such as by disrupting the cell membrane of bacteria, uncoupling the oxidative phosphorylation, inhibiting the DNA replication, forming free radicals and affecting the cellular signalling of bacteria leading to cell death.  相似文献   

5.
6.
Cheeseweed mallow (Malva parviflora L.) was used to biosynthesize silver nanoparticles. The biosynthesized silver nanoparticles were classified by UV–vis Spectroscopy and Fourier-Transform Infrared Spectroscopy (FT-IR). The shape and size distribution were visualized by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), and Zeta potential analysis. The chemical composition of M. parviflora leaf extract was identified by Gas Chromatography and Mass Spectroscopy (GC/MS). Finally, in vitro antifungal assay was done to assess the potential of biosynthesized silver nanoparticles and crude leaf extract of M. parviflora for inhibiting the mycelial growth of phytopathogenic fungi. The UV–vis analysis manifests the formation of silver nanoparticles. FTIR analysis established that chemicals of the leaf extract stabilized the biosynthesized silver nanoparticles by binding with the free silver ions. The TEM, FE-SEM and zeta potential analyzer confirmed that the biosynthesized silver nanoparticles were mostly spherical with an average diameter of 50.6 nm. The biosynthesized silver nanoparticles and leaf extract of M. parviflora effectively mitigate the mycelial growth of Helminthosporium rostratum, Fusarium solani, Fusarium oxysporum, and Alternaria alternata. The maximum reduction in mycelial growth by biosynthesized nanoparticles was observed against H. rostratum (88.6%). Whereas, the leaf extract of M. parviflora was most effective against F. solani (65.3%). Thus, the biosynthesis of nanoparticle assisted by M. parviflora is a feasible and eco-friendly method for the synthesis of silver nanoparticles. Further the silver nanoparticles and leaf extract of M. parviflora could be explored for the development of the fungicide.  相似文献   

7.
The white rot basidiomycete Pleurotus ostreatus produces two manganese peroxidase (MnP) isoenzymes when grown in solid stationary conditions on poplar sawdust, whereas a lower production of these same enzymes is observed on fir sawdust. Addition of Mn(2+) to poplar culture resulted in a threefold increase of MnP activity; the same addition to fir culture was able to increase tenfold the MnP production. The two MnP isoenzymes (MnP2 and MnP3) were purified from P. ostreatus poplar culture. The isoenzymes differ in their pI values, molecular masses, and N-terminal sequences. MnP3 has the same N-terminal sequence as that of a P. ostreatus MnP previously reported. Both isoenzymes exhibit Mn(2+)-dependent and Mn(2+)-independent peroxidase activities when tested on phenolic substrates. The gene coding for the new isoenzyme MnP2 was cloned and sequenced and the promoter region analyzed. Furthermore, the chromosomal localization of all known P. ostreatus genes was determined.  相似文献   

8.
The intra- and extracellular contents of vitamins were studied in the course of submerged cultivation of the higher basidial mushroom Pleurotus ostreatus (Jacq.: Fr.) Kummer st. IMBF-1300 on liquid nutrient media. This strain was found to be autotrophic in respect of thiamin (vitamin B1), riboflavin (vitamin B2), niacin (vitamin B5), pyridoxine (vitamin B6) and biotin (vitamin B7), but it failed to synthesize cyanocobalamin (vitamin B12). The composition and pH of the culture medium, containing such complex biostimulating supplements as maize extract and concentrated potato sap noticeably influence the contents of vitamins B1, B5 and B7 in the mycelium, and to a less degree they change the level of the intracellular biosynthesis of vitamins B2 and B6. Higher excretion of vitamins B5, B7 and especially B6 was observed on the semisynthetic media during the postexponential growth. Under experimental conditions vitamins B1 and B2 were accumulated only in the cells. The dry mycelium of P. ostreatus obtained by submerged cultivation on liquid media is a valuable source of B vitamins and, especially, of niacin. Thus the oyster mushroom and other edible mushrooms can be put at one of the top places among food-stuffs by the content of niacin.  相似文献   

9.
Abstract

We have conducted a thorough study on extracellular biosynthesis of silver nanoparticles (AgNPs) by a halotolerant bacterium Bacillus endophyticus SCU-L, which was identified by 16S rRNA gene sequencing analysis. This strain was selected during an ongoing research programme aimed at finding a novel biological method for green nanosynthetic routes using the extremophiles in unexplored hypersaline habitats. The biosynthesized AgNPs were characterized and analyzed with UV–vis spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy and X-ray diffraction. Further, the AgNPs were found to be spherical in shape with an average particle size of about 5.1?nm, and it was stable in aqueous solution for three months period of storage at room temperature under dark condition. Also, the synthesized AgNPs significantly presented antimicrobial activity against Candida albicans, Escherichia coli, Salmonella typhi and Staphylococcus aureus. The above results suggested that the present work may provide a valuable reference and theoretical basis for further exploration on microbial biosynthesis of AgNPs by halotolerant bacteria.  相似文献   

10.
In the present study the microbial biosynthesis of silver nanoparticles (AgNPs) by secondary metabolites of Streptomyces sp. SS2 in an eco-friendly approach has been reported. The Streptomyces sp. SS2 was isolated from the soil sediment of Similipal Biosphere Reserve. The identification of this strain was determined by phenotypical characteristics (morphological and biochemical) and molecular characterization method using 16 s rDNA sequencing. The morphological study was also done by high-resolution scanning electron microscopy. The preliminary characterization of biosynthesized silver nanoparticle was carried out using UV–Vis spectrum analysis, which showed an absorption peak at 420 nm corresponding to plasmon absorption of silver. The average size and charge (zeta potential) of the particles were found to be 67.95 ± 18.52 nm and ?17.7 ± 5.30 mV, respectively. The functional groups were identified by FTIR studies and their morphology (round and spherical shape) was determined by scanning electron microscopy. The synthesized AgNPs exhibited excellent antibacterial activity against Escherichia coli (MTCC 1089), Bacillus subtilis (MTCC 7164), Staphylococcus epidermis (MTCC 3615), Vibrio cholerae (MTCC 3904) and Staphylococcus aureus (MTCC 1144). These biotechnological approaches of synthesis of nanoparticles can direct a new path in biomaterial sciences and enrich biomedical applications.  相似文献   

11.
Aspergillus tubingensis and Bionectria ochroleuca showed excellent extracellular ability to synthesize silver nanoparticles (Ag NP), spherical in shape and 35?±?10 nm in size. Ag NP were characterized by transmission electron microscopy, X-ray diffraction analysis, and photon correlation spectroscopy for particle size and zeta potential. Proteins present in the fungal filtrate and in Ag NP dispersion were analyzed by electrophoresis (sodium dodecyl sulfate polyacrylamide gel electrophoresis). Ag NP showed pronounced antifungal activity against Candida sp, frequently occurring in hospital infections, with minimal inhibitory concentration in the range of 0.11–1.75 μg/mL. Regarding antibacterial activity, nanoparticles produced by A. tubingensis were more effective compared to the other fungus, inhibiting 98.0 % of Pseudomonas. aeruginosa growth at 0.28 μg/mL. A. tubingensis synthesized Ag NP with surprisingly high and positive surface potential, differing greatly from all known fungi. These data open the possibility of obtaining biogenic Ag NP with positive surface potential and new applications.  相似文献   

12.
The present study describes the biosynthesis of silver nanoparticles, using the fungus Penicillium verrucosum. The silver nanoparticles were synthesised by reacting silver nitrate (AgNO3) with the cell free filtrates of the fungal culture, and were then characterized by UV–visible spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive, and X-ray diffraction analysis to further evaluate their successful biosynthesis, optical and morphological features (size and shape), and crystallinity. The bioactivity of the synthesized nanoparticles against two phytopathogenic fungi i.e: Fusarium chlamydosporum and Aspergillus flavus was evaluated using nanomaterial seeding media. These biogenic silver nanoparticles were polydisperse in nature, with a size of 10–12 nm. With regard to the antifungal activity, 150 ppm of the nanoparticles suppressed the growth of F. chlamydosporum and A. flavus by about 50%. To the best of our knowledge, this is the first report on the use of P. verrucosum to synthesise silver nanoparticles. The present study demonstrates a novel, simple, and eco-friendly process for the generation of biofunctionally useful biogenic nanoparticles.  相似文献   

13.
Two polysaccharide fractions (PSPO-1a and PSPO-4a) were isolated from the fruiting bodies of Pleurotus ostreatus using ethanol precipitation, anion-exchange chromatography and gel permeation chromatography. Both fractions were heteropolysaccharide containing protein and uronic acid. PSPO-1a was composed of mannose, glucose, galactose, xylose and rhamnose with a molar ratio of 2.47:0.91:1.00:1.66:3.87. PSPO-4a was composed of only three monosaccharides: rhamnose, mannose and galactose with a molar ratio of 0.92:2.69:1.00. The average molecular weight of PSPO-1a and PSPO-4a determined by HPLC were estimated to be 1.8 × 10(4)Da and 1.1 × 10(6)Da respectively. The in vitro tests revealed that two polysaccharides were natural potential antioxidant. Both polysaccharides presented stronger DPPH radical and superoxide anion radical scavenging activity with increasing concentrations, but less effective on scavenging hydroxyl radical. Compared with PSPO-4a, PSPO-1a was the more effective free-radical scavenger. In conclusion, the two polysaccharides may be useful as a naturally potential antioxidant agent for application in food and medicinal fields.  相似文献   

14.
There is an enormous interest in developing safe, cost-effective and environmentally friendly technologies for nano-materials synthesis. In the present study, extracellular biosynthesis of silver nanoparticles was achieved by Epicoccum nigrum, an endophytic fungus isolated from the cambium of Phellodendron amurense. The reduction of the silver ions was monitored by UV–visible spectrophotometry, and the characterization of the Ag NPs was carried out by X-ray diffraction and transmission electron microscopy. The synthesized Ag NPs were exceptionally stable. It was found that an alkaline pH favored the formation of Ag NPs and elevated temperature accelerated the reduction process. Furthermore, the antifungal activity of the Ag NPs was assessed using a microdilution method. The biosynthesized Ag NPs showed considerable activity against the pathogenic fungi. The current research opens a new path for the green synthesis of Ag NPs and the process is easy to scale up for biomedical applications.  相似文献   

15.
16.
Nineteen fungi were tested for their ability to degrade aflatoxin B1 (AFB1). An extracellular enzyme from the edible mushroom Pleurotus ostreatus showed afaltoxin-degradation activity detected by thin-layer chromatography (TLC). An enzyme with this activity was purified by two chromatographies on DEAE-Sepharose and Phenyl-Sepharose. The apparent molecular mass of the purified enzyme was estimated to be 90 kDa by SDS-PAGE. Optimum activities were found in the pH range between 4.0 and 5.0 and at 25 degrees C. Also, degradation activity of several dyes in the presence of H2O2 was tested, resulting in the detection of bromophenol blue-decolorizing activity. Based on these data, we suggest this enzyme is a novel enzyme with aflatoxin-degradation activity. Fluorescence measurements suggest that the enzyme cleaves the lactone ring of aflatoxin.  相似文献   

17.
Summary The Americana Municipal Treatment Station, S?o Paulo, Brazil, manages 400 l of effluent s−1, from domestic and textile origin, which produces an average of 20 t of sludge per day. The decolourization of the effluent and sludge by three strains of Pleurotus (Pleurotus sajor-caju F2, F6 and Pleurotus ostreatus) was evaluated. The strains of P. sajor-caju F2 and F6 were able to decolourize the sludge, while P. ostreatus was less efficient. Detoxification was appraised with three bioassays comprising the cnidarian Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. After exposure to fungi, effluent toxicity decreased but not that of its sludge. Strain P. sajor-caju F6 presented signs of toxicity shown by electron microscopy in the presence of the effluent. The three strains produced high amounts of manganese-peroxidase (Mn–P) and laccase in the presence of the sludge. Although P. ostreatus produced large amount of Mn–P and laccase enzymes, these enzymes did not result in decolourization of the sludge, suggesting that other factors are likely to be involved. Carbon content decreased only in the treatment with P. ostreatus.  相似文献   

18.
平菇菌粗多糖的抗氧化活性研究   总被引:1,自引:0,他引:1  
采用深层发酵技术生产平菇粗多糖,时其清除DPPH自由基、羟自由基的能力、铁离子螯合能力以及还原力进行了比较分析。结果表明:菌丝体粗多糖和发酵液粗多糖均具有较强的抗氧化能力,但2种多糖的抗氧化能力存在差异;茵丝体粗多糖清除DPPH自由基的能力较强,其EC。。值为2.20mg/mL;发酵液粗多糖清除羟自由基的能力、铁离子螯合能力以及还原力较强,其EC50值分别为0.72mg/mL、3.32mg/mL和7.91mg/mL。在一定的浓度范围内,多糖的浓度增加,其抗氧化能力也随之增强,呈量效依赖关系。  相似文献   

19.
20.
Biodegradation of endocrine-disrupting phthalates [diethyl phthalate (DEP), dimethyl phthalate (DMP), butylbenzyl phthalate (BBP)] was investigated with 10 white rot fungi isolated in Korea. When the fungal mycelia were added together with 100 mg/l of phthalate into yeast extract-malt extract-glucose (YMG) medium, Pleurotus ostreatus, Irpex lacteus, Polyporus brumalis, Merulius tremellosus, Trametes versicolor, and T. versicolor MrP1 and MrP13 (transformant of the Mn-repressed peroxidase gene of T. versicolor) could remove almost all of the 3 kinds of phthalates within 12 days of incubation. When the phthalates were added to 5-day pregrown fungal cultures, most fungi except I. lacteus showed the increased removal of the phthalates compared with those of the nonpregrown cultures. In both culture conditions, P. ostreatus showed the highest degradation rates for the 3 phthalates tested. BBP was degraded with the highest rates among the 3 phthalates by all fungal strains. Only 14.9% of 100 mg/l BBP was degraded by the supernatant of P. ostreatus culture in YMG medium in 4 days of incubation, but the washed or homogenized mycelium of P. ostreatus could remove 100% of BBP within 2 days even in distilled water, indicating that the initial BBP biodegradation by P. ostreatus may be attributed to mycelium-associated enzymes rather than extracellular enzymes. The biodegradation rate of BBP by the immobilized cells of P. ostreatus was almost the same as that in the suspended culture. The estrogenic activity of 100 mg/l DMP decreased during biodegradation by P. ostreatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号