首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The conventional decision-making for bridges is mostly focusing on technical, economical, and safety perspectives. Nowadays, the society devotes an ever-increased effort to the construction sector regarding their environmental performance. However, considering the complexity of the environmental problems and the diverse character of bridges, the related research for bridge as a whole system is very rare. Most existing studies were only conducted for a single indicator, part of the structure components, or a specific life stage.

Methods

Life Cycle Assessment (LCA) is an internationally standardized method for quantifying the environmental impact of a product, asset, or service throughout its whole life cycle. However, in the construction sector, LCA is usually applied in the procurement of buildings, but not bridges as yet. This paper presents a comprehensive LCA framework for road bridges, complied with LCA ReCiPe (H) methodology. The framework enables identification of the key structural components and life cycle stages of bridges, followed by aggregation of the environmental impacts into monetary values. The utility of the framework is illustrated by a practical case study comparing five designs for the Karlsnäs Bridge in Sweden, which is currently under construction.

Results and discussion

This paper comprehensively analyzed 20 types of environmental indicators among five proposed bridge designs, which remedies the absence of full spectrum of environmental indicators in the current state of the art. The results show that the monetary weighting system and uncertainties in key variables such as the steel recycling rate and cement content may highly affect the LCA outcome. The materials, structural elements, and overall designs also have varying influences in different impact categories. The result can be largely affected by the system boundaries, surrounding environment, input uncertainties, considered impact indicators, and the weighting systems applied; thus, no general conclusions can be drawn without specifying such issues.

Conclusions

Robustly evaluating and ranking the environmental impact of various bridge designs is far from straightforward. This paper is an important attempt to evaluate various designs from full dimensions. The results show that the indicators and weighting systems must be clearly specified to be applicable in a transparent procurement. This paper provides vital knowledge guiding the decision maker to select the most LCA-feasible proposal and mitigate the environmental burden in the early stage.  相似文献   

2.

Purpose

The paper introduces the publication on “Global Guidance Principles for Life Cycle Assessment Databases”; it focuses on the development of training material and other implementation activities on the publication.

Methods

The document is the output of the “Shonan Guidance Principles” workshop. The publication provides guidance principles for life cycle assessment (LCA) databases; this includes how to collect raw data, how to develop datasets, and how to manage databases. The publication also addresses questions concerning data documentation and review, coordination among databases, capacity building, and future scenarios. As a next step, the publication is used to prepare training material and other implementation activities.

Results

The publication was launched at the LCM 2011 Conference. Since then outreach activities have been organized in particular in emerging economies. Further developments with regard to the guidance principles are foreseen as part of a flagship project within phase 3 of the Life Cycle Initiative. Training material is being developed that will include how to set up databases and develop datasets. The topic has been taken up by United Nations Environment Programme (UNEP) in its Rio?+?20 Voluntary Commitments: UNEP and Society of Environmental Toxicology and Chemistry (SETAC) through the UNEP/SETAC Life Cycle Initiative commit to facilitate improved access to good quality life cycle data and databases as well as expanded use of key environmental indicators that allows the measurement and monitoring of progress towards the environmental sustainability of selected product chains.

Conclusions

The adoption of the “Global Guidance Principles” publication as a de facto global standard is expected to facilitate the work of database teams, especially, in developing countries, and the collaboration in regional networks. These efforts are supported by the development of training material and other implementation activities.  相似文献   

3.

Introduction  

The biannual Life Cycle Management conference series aims to create a platform for users and developers of Life Cycle Assessment (LCA) and related tools to share their experiences. A key concern of the LCM community has been to move beyond the production of LCA reports toward using the developed knowledge. This paper reports and evaluates some of the main outcomes of the 4th International Life Cycle Management Conference (LCM 2009).  相似文献   

4.

Purpose

This article discusses the choice of stakeholder categories and the integration of stakeholders into participatory processes to define impact categories and select indicators.

Methods

We undertook a literature review concerning the roles and the importance of stakeholders in participatory processes, and the use of such processes in environmental and social LCAs (Biswas et al. Int J Life Cycle Assess 3(4):184-190, 1998; Sonnemann et al. Int J Life Cycle Assess 6(6):325-333, 2001; Baldo Int J Life Cycle Assess 7(5):269-275, 2002; James et al. Int J Life Cycle Assess 7(3):151-157, 2002; Bras-Kapwijk Int J Life Cycle Assess 8(5):266-272, 2003; Mettier et al. Int J Life Cycle Assess 11(6):468-476, 2006). As part of the French National Research Agency Piscenlit project, we adapted the Principle, Criteria, Indicator (PCI) method (Rey-Valette et al. 2008), which is an assessment method of sustainable development, as a way to integrate the participatory approach into Social Life Cycle Assessment (SLCA) methodology, mainly at the impact definition stage.

Results and discussion

Different views of participation were found in the literature; there is no consensual normative approach for the implication of stakeholders in LCA development. Some attempts have been made to integrate stakeholders into environmental LCAs but these attempts have not been generalized. However, they strongly emphasize the interrelationship between research on the growing integration of stakeholders and on the choice of stakeholders. We then propose criteria from stakeholder theory (Freeman 1984; Mitchell et al. Acad Manage Rev 22(4):853-886, 1997; Geibler et al. Bus Strat Environ 15:334-346, 2006) in order to identify relevant stakeholders for SLCA participatory approach. The adaptation of the PCI method to Principles, Impacts, and Indicators (PII) enables stakeholders to express themselves and hence leads to definitions of relevant social indicators that they can appropriate. The paper presents results regarding the selection of stakeholders but no specific results regarding the choice of impact categories and indicators.

Conclusions and recommendations

Integrating a participatory approach into SLCAs is of interest at several levels. It enables various factors to be taken into account: plurality of stakeholder interests, local knowledge, and impact categories that make sense for stakeholders in different contexts. It also promotes dialogue and simplifies the search for indicators. However, it requires a multidisciplinary approach and the integration of new knowledge and skills for the SLCA practitioners.  相似文献   

5.

Purpose

As a consequence of the multi-functionality of land, the impact assessment of land use in Life Cycle Impact Assessment requires the modelling of several impact pathways covering biodiversity and ecosystem services. To provide consistency amongst these separate impact pathways, general principles for their modelling are provided in this paper. These are refinements to the principles that have already been proposed in publications by the UNEP-SETAC Life Cycle Initiative. In particular, this paper addresses the calculation of land use interventions and land use impacts, the issue of impact reversibility, the spatial and temporal distribution of such impacts and the assessment of absolute or relative ecosystem quality changes. Based on this, we propose a guideline to build methods for land use impact assessment in Life Cycle Assessment (LCA).

Results

Recommendations are given for the development of new characterization models and for which a series of key elements should explicitly be stated, such as the modelled land use impact pathways, the land use/cover typology covered, the level of biogeographical differentiation used for the characterization factors, the reference land use situation used and if relative or absolute quality changes are used to calculate land use impacts. Moreover, for an application of the characterisation factors (CFs) in an LCA study, data collection should be transparent with respect to the data input required from the land use inventory and the regeneration times. Indications on how generic CFs can be used for the background system as well as how spatial-based CFs can be calculated for the foreground system in a specific LCA study and how land use change is to be allocated should be detailed. Finally, it becomes necessary to justify the modelling period for which land use impacts of land transformation and occupation are calculated and how uncertainty is accounted for.

Discussion

The presented guideline is based on a number of assumptions: Discrete land use types are sufficient for an assessment of land use impacts; ecosystem quality remains constant over time of occupation; time and area of occupation are substitutable; transformation time is negligible; regeneration is linear and independent from land use history and landscape configuration; biodiversity and multiple ecosystem services are independent; the ecological impact is linearly increasing with the intervention; and there is no interaction between land use and other drivers such as climate change. These assumptions might influence the results of land use Life Cycle Impact Assessment and need to be critically reflected.

Conclusions and recommendations

In this and the other papers of the special issue, we presented the principles and recommendations for the calculation of land use impacts on biodiversity and ecosystem services on a global scale. In the framework of LCA, they are mainly used for the assessment of land use impacts in the background system. The main areas for further development are the link to regional ecological models running in the foreground system, relative weighting of the ecosystem services midpoints and indirect land use.  相似文献   

6.

Purpose

Life cycle assessment (LCA) practitioners face many challenges in their efforts to describe, share, review, and revise their product system models, and to reproduce the models and results of others. Current life cycle inventory modeling techniques have weaknesses in the areas of describing model structure, documenting the use of proxy or non-ideal data, specifying allocation, and including modeler’s observations and assumptions—all affecting how the study is interpreted and limiting the reuse of models. Moreover, LCA software systems manage modeling information in different and sometimes non-compatible ways. Practitioners must also deal with licensing, privacy/confidentiality of data, and other issues around data access which impact how a model can be shared.

Methods

This letter was prepared by a working group of the North American Life Cycle Assessment Advisory Group to support the UNEP-SETAC Life Cycle Initiative’s Flagship Activity on Data, Methods, and Product Sustainability Information. The aim of the working group is to define a roadmap of the technical advances needed to achieve easier LCA model sharing and improve replicability of LCA results among different users in a way that is independent of the LCA software used to compute the results and does not infringe on any licensing restrictions or confidentiality requirements. This is intended to be a consensus document providing the state of the art in this area, with milestones for research and implementation needed to resolve current issues.

Results and Conclusions

The roadmap identifies fifteen milestones in three areas: “describing model contents,” “describing model structure,” and “collaborative use of models.” The milestones should support researchers and software developers in advancing practitioners’ abilities to share and review product system models.
  相似文献   

7.

Purpose

Life cycle assessment (LCA) has become a standard for assessing what impacts do products and/or services have throughout their entire life cycle. Since the inception of LCA technique, studies have been conducted in different parts of the world, including Tanzania. This study describes the current status of LCA, capacities, and networking in Tanzania. The study has identified what has already been done and potential research gaps that could be explored in future LCA studies.

Methods

A state-of-the-art review was conducted on published articles, reports, and other materials on LCA in Tanzania (covering a time frame of 1990–2015) which were searched on databases of scientific research and the general internet using a combination of keywords: “life cycle assessment and Tanzania,” “LCA and Tanzania,” and “life cycle assessment and LCA and Tanzania.” Reviews were on current status, research gaps, and the need for future research. Information related to education or training activities and networking were also gathered and reviewed.

Results and discussion

Literature review has revealed that in Tanzania the first LCA study was published in 2007. Few articles and reports were identified in which LCA technique was used mainly for academic research in agriculture, electricity generation, charcoal, biodiesel production from jatropha oil, bioethanol production from sugarcane molasses, production of biofuels from pyrolysis of wood, and production of charcoal from sawmill residues. The very small number of LCA studies conducted in the country could be due to the lack of skilled personnel, lack of local data, and lack of research funds. Tanzania Life Cycle Assessment Network was created to link LCA practitioners and to promote and support further development of LCA in the country. Also, LCA potential is huge yet to be fully explored.

Conclusions

This state-of-the-art review is the first of its kind that summarizes and puts together all LCA studies in Tanzania. Most studies faced the challenge of lack of local data, which resulted to the use of secondary data from the literature. In LCA, the use of data from different geographical conditions could cause bias of the results and consequently could affect the decision made or to be made from the study. In this regard, the study recommends the establishment of national LCI database to solve this problem. Also, most studies covered only few impact categories prompting for full LCA studies in future studies. The study also found that there is a need to establish regular LCA training and courses for capacity development.
  相似文献   

8.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.020

-

UNEP DTIE, through its Life Cycle Initiative, aims to enhance the skills of small and medium sized enterprises (SMEs) in developing countries on Life Cycle Management (LCM). This is part of its contribution to the 10-year framework of program on Sustainable Consumption and Production as a follow-up of the World Summit on Sustainable Development (2002). Apart from the potential of improving their environmental performance, life cycle thinking and the use of LCA can be a business opportunity for SMEs. The development of environmental management expertise may help them to position themselves as reliable suppliers. The Life Cycle Initiative has promoted and facilitated the establishment of regional life cycle networks, and UNEP has started a training program on LCM targeted at National Cleaner Production Centers (NCPCs) and other national institutes that are able to pass on the information to the target groups. Some multinational companies have started to provide capacity building on life cycle management for suppliers in developing countries. More companies could use this approach to help developing countries to tackle environmental requirements in the supply chain and thus the private sector may contribute significantly to eco-efficiency, cost savings and finding new markets for sustainable products and services in developing countries. Life cycle thinking applied to basic services such as water, waste and energy could be another way to directly contribute with life cycle management to human development.
  相似文献   

9.
The 67th Discussion Forum on Life Cycle Assessment (LCA), organised by partners of the European project RELIEF (RELIability of product Environmental Footprints), focused on methods for better understanding the impacts of land use linked to agricultural value chains. The first session of the forum was dedicated to methods that help in retrospective tracking of land use within complex supply chains. Novel approaches were presented for the integration of increasingly available spatially located land use data into LCA. The second session focused on forward-looking projections of land use change and included emerging, predictive methods for the modelling of land change. The third session considered impact assessment methods related to the use of land and their application together with land change modelling approaches. Discussions throughout the day centred on opportunities and challenges arising from integrating spatially located land use information into Life Cycle Assessment. Increasing amounts of spatially located land use data are becoming available and this could potentially increase the robustness and specificity of Life Cycle Assessment. However, the use of such data can be computationally expensive and requires the development of skills (i.e. use of geographical information systems (GIS) and model coding) within the LCA community. Land change modelling and ecosystem service modelling are associated with considerable uncertainty which must be communicated appropriately to stakeholders and decision-makers when interpreting results from an LCA. The new approaches were found to challenge aspects of the traditional LCA approach—particularly the division between the life cycle inventory and impact assessment and the assumption of linearity between scale and impacts when deriving characterisation factors. The presentations from the DF-67 are available for download (www.lcaforum.ch), and video recordings can be accessed online (http://www.video.ethz.ch/events/lca/2017/autumn/67th.html).  相似文献   

10.

Purpose

While the application of Life Cycle Assessment (LCA) to lubricants can be considered fully operational for general purposes outside the lubricants industry, where Life Cycle Inventories (LCIs) of mineral and synthetic base oils can be used interchangeably and where additives can be excluded, this is not the case for research and development purposes within the industry. Previous LCAs of base oils are not sufficiently detailed and comprehensive for R&D purposes, and there are no LCAs of lube additives and fully formulated lubricants. The aim of this paper is to integrate and expand previous LCAs of base oils and to investigate on the contribution of lube additives to the environmental impacts of a fully formulated lubricant.

Materials and methods

This study considers three base oils (mineral, poly-alpha-olefins (PAO) and hydrocracked) and a set of lubricating additives typically used in fully formulated engine oil. The LCA model is based on both industry and literature data.

Results and discussion

Trends in the lubricants industry towards more sophisticated base oils correspond to remarkably higher environmental impacts per kilogram of product but lead to reduced impacts per kilometre. The contribution of additives to the life cycle impacts of commercial lube oil was found to be remarkably high for some impact categories (nearly 35?% for global warming).

Conclusions

As base oil is concerned, this study made the point on data availability and provided a contribution in order to integrate and expand previous LCAs of mineral base oil and PAO. On the side of additives, the main conclusion is that in modern lubricants, the contribution of additives in terms of environmental impact can be remarkably high and, therefore, they should not be excluded.  相似文献   

11.
12.

Purpose

Parameterization refers to the practice of presenting Life Cycle Assessment (LCA) data using raw data and formulas instead of computed numbers in unit process datasets within databases. This paper reviews parameterization methods in the European Reference Life Cycle Data System (ELCD), ecoinvent v3, and the US Department of Agriculture's Digital Commons with the intent of providing a basis for continued methodological and coding advances.

Methods

Parameterized data are reviewed and categorized with respect to the type (raw data and formulas) and what is being represented (e.g., consumption and emission rates and factors, physical or thermodynamic properties, process efficiencies, etc.). Parameterization of engineering relationships and uncertainty distributions using Smirnov transforms (a.k.a. inverse transform sampling), and ensuring uncertain individual fractions (e.g., market shares) sum to the total value of interest are presented.

Results

Seventeen categories of parameters (raw data and formulas) are identified. Thirteen ELCD unit process datasets use 975 parameters in 12 categories, with 124 as raw data points and 851 as formulas, and emission factors as the most common category of parameter. Five additional parameter categories are identified in the Digital Commons for the presentation and analysis of data with uncertainty information, through 146 parameters, of which 53 represent raw data and 93 are formulas with most being uncertainty parameters, percentages, and consumption parameters.

Conclusions

Parameterization is a powerful way to ensure transparency, usability, and transferability of LCI data. Its use is expected to increase in frequency, the categories of parameters used, and the types of computational methods employed.  相似文献   

13.

Purpose

The year-round supply of fresh fruit and vegetables in Europe requires a complex logistics system. In this study, the most common European fruit and vegetable transport packaging systems, namely single-use wooden and cardboard boxes and re-useable plastic crates, are analyzed and compared considering environmental, economic, and social impacts.

Methods

The environmental, economic, and social potentials of the three transport packaging systems are examined and compared from a life cycle perspective using Life Cycle Assessment (LCA), Life Cycle Costing (LCC) and Life Cycle Working Environment (LCWE) methodologies. Relevant parameters influencing the results are analyzed in different scenarios, and their impacts are quantified. The underlying environmental analysis is an ISO 14040 and 14044 comparative Life Cycle Assessment that was critically reviewed by an independent expert panel.

Results and discussion

The results show that wooden boxes and plastic crates perform very similarly in the Global Warming Potential, Acidification Potential, and Photochemical Ozone Creation Potential categories; while plastic crates have a lower impact in the Eutrophication Potential and Abiotic Resource Depletion Potential categories. Cardboard boxes show the highest impacts in all assessed categories. The analysis of the life cycle costs show that the re-usable system is the most cost effective over its entire life cycle. For the production of a single crate, the plastic crates require the most human labor. The share of female employment for the cardboard boxes is the lowest. All three systems require a relatively large share of low-qualified employees. The plastic crate system shows a much lower lethal accident rate. The higher rate for the wooden and cardboard boxes arises mainly from wood logging. In addition, the sustainability consequences due to the influence of packaging in preventing food losses are discussed, and future research combining aspects both from food LCAs and transport packing/packaging LCAs is recommended.

Conclusions

For all three systems, optimization potentials regarding their environmental life cycle performance were identified. Wooden boxes (single use) and plastic crates (re-usable) show preferable environmental performance. The calibration of the system parameters, such as end-of-life treatment, showed environmental optimization potentials in all transport packaging systems. The assessment of the economic and the social dimensions in parallel is important in order to avoid trade-offs between the three sustainability dimensions. Merging economic and social aspects into a Life Cycle Assessment is becoming more and more important, and their integration into one model ensures a consistent modeling approach for a manageable effort.  相似文献   

14.

Introduction

The European Commission is supporting the development of the International Reference Life Cycle Data System (ILCD). This consists primarily of the ILCD Handbook and the ILCD Data Network. This paper gives an insight into the scientific positions of business, governments, consultants, academics, and others that were expressed at this public consultation workshop.

Workshop focus

The workshop focused on four of the topics of the main guidance documents of the ILCD Handbook: (1) general guidance on life cycle assessment (LCA); (2) guidance for generic and average life cycle inventory (LCI) data sets; (3) requirements for environmental impact assessment methods, models and indicators for LCA; and (4) review schemes for LCA.

Workshop participation

This consultation workshop was attended by more than 120 participants during the 4 days of the workshop. Representatives came from 23 countries, from both within and outside the European Union.

Workshop structure

Approximately half of the participants were from business associations or individual companies. Another 20% were governmental representatives. Others came predominantly from consultancies and academia.

Results

This public consultation workshop provided valuable inputs into the overall ILCD Handbook developments as well as for further development. This paper focuses on some of the main scientific issues that were raised.  相似文献   

15.

Purpose

The paper provides a late report from the United Nations Environment Program (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative workshop “Life Cycle Impact Assessment (LCIA)—where we are, trends, and next steps;” it embeds this report into recent development with regard to the envisaged development of global guidance on environmental life cycle impact assessment indicators and related methodologies.

Methods

The document is the output of the UNEP/SETAC Life Cycle Initiative’s workshop on “Life Cycle Impact Assessment—where we are, trends, and next steps.” The presentations and discussions held during the workshop reviewed the first two phases of the Life Cycle Initiative and provided an overview of current LCIA activities being conducted by the Initiative, governments and academia, as well as corporate approaches. The outcomes of the workshop are reflected in light of the implementation of the strategy for Phase 3 of the Life Cycle Initiative.

Results

The range of views provided during the workshop indicated different user needs, with regards to, amongst other things, the required complexity of the LCIA methodology, associated costs, and the selection of LCIA categories depending on environmental priorities. The workshop’s results signified a number of potential focus areas for Phase 3 of the Initiative, including capacity building efforts concerning LCIA in developing countries and emerging economies, the preparation of training materials on LCIA, the production of global guidance on LCIA, and the potential development of a broader sustainability indicators framework.

Conclusions

These suggestions have been taken into account in the strategy for Phase 3 of the Life Cycle Initiative in two flagship projects, one on global capability development on life cycle approaches and the other on global guidance on environmental life cycle impact assessment indicators. In the context of the latter project, first activities are being organized and planned. Moreover, UNEP has included the recommendations in its Rio + 20 Voluntary Commitments: UNEP and SETAC through the UNEP/SETAC Life Cycle Initiative commit to facilitate improved access to good quality life cycle data and databases as well as expanded use of key environmental indicators that allows the measurement and monitoring of progress towards the environmental sustainability of selected product chains.  相似文献   

16.
The clearwater consensus: the estimation of metal hazard in fresh water   总被引:1,自引:0,他引:1  

Background, aim, and scope

Task Force 3 of the UNEP/SETAC Life Cycle Initiative has been working towards developing scientifically sound methods for quantifying impacts of substances released into the environment. The Clearwater Consensus follows from the Lausanne (Jolliet et al. Int J Life Cycle Assess 11:209–212, 2006) and Apeldoorn (Apeldoorn Int J Life Cycle Assess 9(5):334, 2004) statements by recommending an approach to and identifying further research for quantifying comparative toxicity potentials (CTPs) for ecotoxicological impacts to freshwater receptors from nonferrous metals. The Clearwater Consensus describes stages and considerations for calculating CTPs that address inconsistencies in assumptions and approaches for organic substances and nonferrous metals by focusing on quantifying the bioavailable fraction of a substance.

Methods

A group of specialists in Life Cycle Assessment, Life Cycle Impact Assessment, metal chemistry, and ecotoxicology met to review advances in research on which to base a consensus on recommended methods to calculate CTPs for metals.

Conclusions and recommendations

Consensus was reached on introducing a bioavailability factor (BF) into calculating CTPs where the BF quantifies the fraction of total dissolved chemical that is truly dissolved, assuming that the latter is equivalent to the bioavailable fraction. This approach necessitates calculating the effects factor, based on a HC50EC50, according to the bioavailable fraction of chemical. The Consensus recommended deriving the BF using a geochemical model, specifically WHAM VI. Consensus was also reached on the need to incorporate into fate calculations the speciation, size fractions, and dissolution rates of metal complexes for the fate factor calculation. Consideration was given to the characteristics of the evaluative environment defined by the multimedia model, which is necessary because of the dependence of metal bioavailability on water chemistry.  相似文献   

17.

Purpose

Topsoil erosion due to land use has been characterised as one of the most damaging problems from the perspective of soil-resource depletion, changes in soil fertility and net soil productivity and damage to aquatic ecosystems. On-site environmental damage to topsoil by water erosion has begun to be considered in Life Cycle Assessment (LCA) within the context of ecosystem services. However, a framework for modelling soil erosion by water, addressing off-site deposition in surface water systems, to support life cycle inventory (LCI) modelling is still lacking. The objectives of this paper are to conduct an overview of existing methods addressing topsoil erosion issues in LCA and to develop a framework to support LCI modelling of topsoil erosion, transport and deposition in surface water systems, to establish a procedure for assessing the environmental damage from topsoil erosion on water ecosystems.

Methods

The main features of existing methods addressing topsoil erosion issues in LCA are analysed, particularly with respect to LCI and Life Cycle Impact Assessment methodologies. An overview of nine topsoil erosion models is performed to estimate topsoil erosion by water, soil particle transport through the landscape and its in-stream deposition. The type of erosion evaluated by each of the models, as well as their applicable spatial scale, level of input data requirements and operational complexity issues are considered. The WATEM-SEDEM model is proposed as the most adequate to perform LCI erosion analysis.

Results and discussion

The definition of land use type, the area of assessment, spatial location and system boundaries are the main elements discussed. Depending on the defined system boundaries and the inherent routing network of the detached soil particles to the water systems, the solving of the multifunctionality of the system assumes particular relevance. Simplifications related to the spatial variability of the input data parameters are recommended. Finally, a sensitivity analysis is recommended to evaluate the effects of the transport capacity coefficient in the LCI results.

Conclusions

The published LCA methods focus only on the changes of soil properties due to topsoil erosion by water. This study provides a simplified framework to perform an LCI of topsoil erosion by considering off-site deposition of eroded particles in surface water systems. The widespread use of the proposed framework would require the development of LCI erosion databases. The issues of topsoil erosion impact on aquatic biodiversity, including the development of characterisation factors, are now the subject of on-going research.  相似文献   

18.

Purpose

The aim of this article is to signal the changes envisaged by ISO TC/207 SC1 for introduction in the new version of ISO 14001:2015 as well as to discuss the role of eco-design and life cycle thinking (LCT) in the context of Environmental Management Systems (EMS).

Methods

A review of the proposed changes to be introduced in the new version of ISO 14000:2015 with particular emphasis on those related to LCT and eco-design has been carried out. Additionally, for the purpose of this article, the guidelines with regard to ISO 14006:2011 have been analysed in the context of the role that eco-design plays in an EMS.

Results

The new version of ISO 14001:2015 includes many direct and indirect references to LCT. One of the key changes is organisations adapting a wider perspective to see how their environmental impact stretch across the whole supply chain. Another key recommendation is to use eco-design for identifying and assessing the environmental aspects in relation to products. The whole life cycle of the products should be analysed, which will result in the inclusion of indirect environmental aspects that are beyond the direct control of the organisation.

Conclusions

The planned changes to ISO 14001:2015 with regard to the use of LCT and eco-design should be seen as a significant piece of information by eco-designers and life cycle assessment (LCA) practitioners since they provide a real opportunity to increase interest in eco-design tools amongst the environmental managers responsible for the environmental management systems within their organisations. It seems that now is the right time to initiate information campaigns and training on eco-design and LCA tailored specifically for organisations, which have implemented environmental management systems.  相似文献   

19.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.019

Background

Life cycle assessments have been performed using different methods before the name was coined since about 1970 in several countries of North America and Europe. It was the merit of SETAC to start a standardization process which culminated in the LCA-guidelines ('A code of practice') in 1993. It is the aim of this paper to trace back this and further LCA-related achievements by SETAC on the basis of documents and personal memories. It may be subjective in the selection and weighting of some events, but objectivity is strived for with regard to the whole and, in my view, singular development.

Results and Discussion

Starting 1990 with two workshops in Smuggler's Notch (Vermont) and Leuven (Belgium), SETAC and SETAC Europe organized several workshops during which important topics (framework, impact assessment, data quality, etc.) were treated and published in the form of reports which are still available. The main contribution by CML and its head, Helias Udo de Haes, was a practical method of impact assessment, transforming the formerly more technocratic LCA (energy, resources, waste) into an instrument of environmental assessment of product systems. In addition, important contributions to the allocation problem were made. Starting in 1993, ISO took over the leadership in standardization and SETAC started the famous working groups in North America and Europe, often dealing with the same topics in parallel. Due to the different cultures, the results were frequently complimentary rather than harmonic. The CML-method of LCIA, widely accepted in Europe, had to wait for about 10 years to be accepted at the other side of the Atlantic. It was helpful that SETAC – meanwhile a global organization – looked for a partner in order to implement LCA all over the world. This partner was found in the 'United Nations Environmental Programme' (UNEP) and the UNEP/SETAC Life Cycle Initiative was officially launched by Klaus Töpfer in Prague in April 2002. SETAC also assumed an important role in communicating LCA via publications: workshop and conference reports, the 'code of practice', working group results and LCA News Letters. The annual meetings offered forums for LCA scientists, practitioners and users, well prepared by the LCA Steering Committee (SETAC Europe) and the LCA Advisory Group (SETAC North America).

Recommendation

. The main recommendation to SETAC is to adhere to LCA as the main environmental assessment tool for products and to expand it to a true sustainability assessment tool by adding Life Cycle Costing (LCC) and a still to be invented 'Social Life Cycle Assessment'. SETAC is to remain the scientific arm within the UNEP/SETAC LC Initiative, without loosing its identity. Working groups should be global rather than regional in the future, as suggested by the SETAC Europe LCA Steering Committee at the 2004 World Congress in Portland, Oregon.
  相似文献   

20.

Purpose

Life Cycle Analysis (LCA) and Social Life Cycle Analysis (SLCA) are tools acknowledged to have a role to play in the transition towards Sustainable Production and Consumption patterns (SPC). However, the role they play in this transition is seldom discussed, especially for SLCA. In addition, although the importance of taking a life cycle thinking (LCT) in the progression towards SPC seems indisputable, its added value is seldom made explicit. This article wishes to highlight the role of SLCA in the transition towards more sustainable production and consumption patterns and questions the relevance of LCT in this role.

Methods

To answer this question, we first identify the applications of SLCA that correspond to actions that have to be taken in the transition towards SPC based on the SPC and SLCA literature. Then, the relevance of LCT in the context of the different applications identified previously is questioned through a qualitative discursive analysis approach.

Results

The social goal of SPC is poorly discussed, and the SLCA literature can be one source of inspiration to define what this goal could be. On the basis of the UNEP-SETAC (2009) Guidelines’ SLCA ultimate goal, SPC could be a means to improve stakeholders’ social conditions through the improvement of enterprises’ behaviours. The intended applications of SLCA for potentially supporting the improvement of enterprises’ behaviours are found to be the identification of hotspots in order to highlight areas of improvement inside the sphere of influence of the SLCA user and the guidance of purchasing and substitution choices on the basis of enterprises’ behaviours. In this article, it is suggested that, for SLCA to deserve the “LCT label”, it has to capture impact transfers along the products’ life cycle. Otherwise, an “ability-to-act-on” perspective is the proper angle to adopt in the identification of areas of improvement inside the sphere of influence and a “cradle-to-retailer”, the one to adopt when SLCA is used to guide buy/boycott.

Conclusions

Aside from revisiting the role of LCA and SLCA in SPC and the raison d’être of LCT, we discuss some considerations which we believe should be taken into account when developing SLCA in the context of SPC. In conclusion, this article points to the importance of framing the use of Life Cycle Sustainability Assessment tools in their context of use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号