首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aims: To find a formulation of Epicoccum nigrum conidia that enhances its adhesion to peach surfaces and improves its biocontrol efficacy against brown rot caused by Monilinia laxa. Methods and Results: The stickers, glycerol, sodium alginate and methylcellulose; the desiccants, silica powder and talc; and a commercial adhesive (NU FILM 17®) were added at two different points during the production of an E. nigrum conidial formulation to improve conidial adhesion to peach surfaces. Conidial adhesion levels were determined from the number of E. nigrum conidia that adhered to glass slides or peach surfaces and conidial viability of adherent E. nigrum conidia was determined from the number of colony‐forming units of glass or peach‐adherent E. nigrum that grew on Petri dishes that contained potato dextrose agar. Compared to dried E. nigrum conidia without additives, the adhesion and viability of adherent E. nigrum conidia to peach surfaces were enhanced when either 1·25% sodium alginate or 2·5% methylcellulose was added to the conidial mass after fluid‐bed drying, and when 2·5% methylcellulose was added to the conidial mass after its production and before fluid‐bed drying. Epicoccum nigrum conidial formulations with 2·5% methylcellulose were more effective than dried E. nigrum conidia without additives in reducing the incidence of brown rot in peaches caused by M. laxa. Conclusions: When 2·5% methylcellulose is incorporated into an E. nigrum conidial formulation, the adhesion of E. nigrum conidia to peach surfaces improves and results in efficacious biocontrol of brown rot. Significance and Impact of the Study: A new improved formulation of a biocontrol agent has been developed to improve the control of M. laxa on peaches.  相似文献   

2.
The endoparasitic nematophagous fungus, Esteya vermicola, has potential as a biocontrol agent against pinewood nematode, Bursaphelenchus xylophilus. An E. vermicola conidial formulation was developed to improve conidial resistance to ultraviolet (UV), drought and heat stress. The effective concentration of each protective additive [UV protectant [fulvic acid (FA) and skim milk (SM)]; drought protectant (sorbitol) and heat protectant (calcium chloride)] was determined based on the germination rate of E. vermicola conidia after exposure to the different stressors. A combination of 0.2% FA and 4% SM, 5% sorbitol and 0.05% calcium chloride provided the most effective protection. In addition, the concentrations of spreader–sticker and antibiotic were also decided. The final formulation could be used to improve the resistance of E. vermicola conidia to multiple stressors and to increase nematode mortality compared with unformulated conidia.  相似文献   

3.
Post-harvest pathogens cause major losses in apple production. Biological control by using epiphytic yeasts against Penicillium expansum has been considered as an alternative method for controlling the post-harvest decays. The yeast isolates Rhodotorula mucilaginosa, Pichia guilliermondii, which showed high biocontrol efficacy against P. expansum, were selected for formulation tests. Formulation is an important step in developing a biocontrol product. The successful delivery of biocontrol agents, shelf life, stability and effectiveness in commercial conditions depend on the formulation. In the formulation, the carrier is the primary material used to allow a bioproduct to be dispersed effectively. Yeast isolates were grown in a cane molasses-based medium. Harvested yeast cells were combined with inorganic (talk, kaolin) and organic (Rice bran, wheat bran) carriers. Viability of the yeast cells in formulations stored at 4°C and 24°C was determined each month during 6 months storage. After 6 months storage to evaluate efficacy of formulations, all formulations were tested on apple to control blue mold in storage condition. High stability of antagonistic yeasts was achieved by using organic and inorganic carriers. Rice bran and wheat bran stimulated the germination of the yeasts cells during storage period. Both of the yeasts had significantly highest viable yeast cell content over 6 months in formulation containing wheat bran as a carrier. P.guillermondii in all formulations had significantly higher shelf life and was effective than R. mucilaginosa.  相似文献   

4.
The nematophagous fungus Esteya vermicola has tremendous potential for biological control. This species exhibits strong infectious activity against pinewood nematodes, whereas the study on the effect of nutrition and environmental factors is still of paucity. Carbon (C), nitrogen (N), pH value, temperature, and water activity have great impact on the fungal growth, sporulation, and germination. In nutrition study, the greatest number of conidia (2.36 × 109 per colony) was obtained at the C:N ratio of 100:1 with a carbon concentration 32 g l?1. In addition, the germination rate and radial growth of E. vermicola were used to evaluate the effects of environmental conditions and they were optimized as following: pH 5.5, 26 °C and water activity of 0.98. Our results also confirmed that variation of environmental factors has a detrimental influence on the efficacy of active conidia and growth of fungus. Moreover, under above optimal condition, the biocontrol efficacy was significantly improved in regard to the increase of adhesive and mortality rate, which highlight the study on the application of E. vermicola as pine wilt disease biocontrol agent.  相似文献   

5.
Esteya vermicola, an endoparasitic fungus of Bursaphelenchus xylophilus, the pinewood nematode (PWN), exhibits great potential as a biological control agent against this nematode. E. vermicola produces blastospores in liquid media and aerial conidia on solid media. The agent was mass-produced using two kinds of culture media: S (50 % wheat bran and 50 % pine wood powder), L (0.5 g wheat bran and 0.5 g pinewood powder in 200 ml of potato dextrose broth), and two controls: SC (potato dextrose agar), LC (potato dextrose broth). Yields, multiple stress tolerance, storage life, new generation conidial number, and PWN mortality rates of the spores were measured in each of these four media and compared. The spore yields, new generation conidial number, and nematode mortality rates of blastospores were higher than those of conidia. Nevertheless, the conidia had a higher germination rate than the blastospores during the storage process and multiple stress treatments. Considering the number of spores surviving from the process of the storage and multiple stress treatments per unit of mass media, the blastospores from L survived most. Comprehensive analysis indicates that the L culture medium is the most optimal medium for mass production relatively.  相似文献   

6.
Metarhizium anisopliae conidia were formulated with three granular carriers and nine dust diluents and stored over an 8- to 12-month period at 4° or 20°C. The virulence of formulations, with the exception of two dust preparations, was reduced significantly compared to unformulated conidia against Culex pipiens pipiens larvae. The formulation components most detrimental to conidial virulence were corn cob granules, diatomaceous earth, and two Kaolinite diluents. This was exampled by a decline in virulence from ca. 100% for unformulated conidia to 36% or below for these formulations. LT50 values also increased from 2.4–2.6 days for unformulated conidia to above 6 days. In contrast, a diluent derived from dried castor oil (Thixcin R) significantly enhanced conidial virulence at several doses above that of unformulated conidia against C. pipiens larvae. Enhancement occurred whether conidia were formulated prior to storage or stored separate from the diluent and mixed prior to application. The Thixcin R formulation was more effective against Anopheles stephensi larvae, but virulence was reduced against Aedes aegypti larvae. A bentonite formulation (Bentone-38) also maintained conidial virulence effectively, but Thixcin R was a superior diluent. It was shown that conidial virulence of formulations was not correlated with differences in conidial viability. The preparations that were applied dry by a surface method were more virulent than when an aqueous suspension containing a surfactant was used. The results demonstrate the need to assess efficacy of mycoinsecticidal formulations in a virulence bioassay prior to field testing.  相似文献   

7.
Maize is an economically important crop in northern Mexico. Different fungi cause ear and root rot in maize, including Fusarium verticillioides (Sacc.) Nirenberg. Crop management of this pathogen with chemical fungicides has been difficult. By contrast, the recent use of novel biocontrol strategies, such as seed bacterization with Bacillus cereus sensu lato strain B25, has been effective in field trials. These approaches are not without their problems, since insufficient formulation technology, between other factors, can limit success of biocontrol agents. In response to these drawbacks, we have developed a powder formulation based on Bacillus B25 spores and evaluated some of its characteristics, including shelf life and efficacy against F. verticillioides, in vitro and in maize plants. A talc-based powder formulation containing 1 × 109 c.f.u. g?1 was obtained and evaluated for seed adherence ability, seed germination effect, shelf life and antagonism against F. verticillioides in in vitro and in planta assays. Seed adherence of viable bacterial spores ranged from 1.0 to 1.41 × 107 c.f.u. g?1. Bacteria did not display negative effects on seed germination. Spore viability for the powder formulation slowly decreased over time, and was 53 % after 360 days of storage at room temperature. This formulation was capable of controlling F. verticillioides in greenhouse assays, as well as eight other maize phytopathogenic fungi in vitro. The results suggest that a talc-based powder formulation of Bacillus B25 spores may be sufficient to produce inoculum for biocontrol of maize ear and root rots caused by F. verticillioides.  相似文献   

8.
The present work focuses on the assessment and comparison of three different formulation technologies and the effect of protectants on cell viability, storage stability and antagonistic activity of the biocontrol agent Bacillus amyloliquefaciens CPA-8. Cultures were concentrated with different protective substances such as MgSO4, sucrose and skimmed milk (SM) and subjected to liquid formulation, freeze-drying and fluid-bed spray-drying. Results showed that CPA-8 freeze-dried cells without protectants or amended with SM suffered the highest losses in cell viability (0.41?0.48 log). Moreover, the cell viability of the tested freeze-dried products decreased after four months of storage at both tested temperatures (4 and 22 °C). Otherwise, liquid and fluid-bed spray-dried products were stable for four months at 4 °C and for 12 months at 22, 4 and ?20 °C, respectively, and no effect of the protectants was observed. The most suitable CPA-8 products were then tested against Monilinia laxa and M. fructicola in artificially wounded nectarines and in all cases the antagonistic activity was maintained similar to fresh cells. The efficacy results revealed that the formulation process did not affect the biocontrol potential of CPA-8. This work led us to conclude that effective formulations with final concentrations ranging from 1.93 × 109–2.98 × 109 CFU ml?1 and from 4.76 × 109–1.03 × 1010 CFU g?1 were obtained for liquid and dried products, respectively. Additionally, the suitability of the fluid-bed spray drying technology should be taken into account to develop a stable and effective CPA-8 product for practical applications to control brown rot in stone fruit.  相似文献   

9.
The major hurdle in the production of commercial biocontrol agents (BCAs) has been the lack of production of appropriate formulations. Of particular importance is the conservation of viability and ecological competence after application. With this in mind studies were conducted to develop formulations of P. anomala which would have these attributes. Cells were grown in molasses-based medium modified with proline to different water availability levels (0.98 and 0.96) which significantly increased (up to 50%) the content of trehalose and arabitol in the yeast cells during liquid broth fermentation. The use of isotonic solutions for harvesting the yeast cells further increased the endogenous content of these compatible solutes as well as glycerol. Fluidised bed drying of cells at 30–80°C was carried out for 10 and 20 min and showed that viability was significantly decreased at 70–80°C. A temperature of 50°C for 20 min was found to be best for viability (70%) and moisture content of <10%. Several additives for conservation of viability showed that cotton seed flour+skimmed milk was the best treatment when dried at 50°C. The biocontrol efficacy of formulated P. anomala cells was tested in laboratory scale studies and this showed that they inhibited growth of Penicillium verrucosum and reduce ochratoxin A production in moist wheat grain under some combinations of water availability. Physiologically modified formulated yeast cells with increased levels of trehalose and arabitol gave similar efficacy as fresh cells. This suggests that ecophysiological manipulation of such BCAs can result in improved ecological competence of such formulations and effective biocontrol.  相似文献   

10.
Successful commercialization of microbial biocontrol agents, such as Metarhizium spp., is often constrained by poor drying survival and shelf life. Here, we hypothesized that culture age would influence endogenous arabitol, erythritol, mannitol and trehalose contents in M. brunneum mycelium and that elevated levels of these compounds would improve drying survival and shelf life of encapsulated mycelium coupled with enhanced fungal virulence against T. molitor larvae. We found that culture age significantly influenced endogenous arabitol and mannitol contents in mycelium with highest concentrations of 0.6?±?0.2 and 2.1?±?0.2 µg/mg after 72 h, respectively. Drying survival of encapsulated mycelium was independent of culture age and polyol content with 41.1?±?4.4 to 55.0?±?6.2%. Best shelf life was determined for biomass harvested after 72 h at all investigated storage temperatures with maximum values of 59.5?±?3.3% at 5 °C followed by 54.5?±?1.6% at 18 °C and 19.4?±?1.3% at 25 °C after 6 months. Finally, high fungal virulence against T. molitor larvae of 83.3?±?7.6 to 98.0?±?1.8% was maintained during storage of encapsulated mycelium for 12 months with larval mortalities being independent of culture age and polyol content. In conclusion, our findings indicate beneficial effects of endogenous polyols in improving shelf life of encapsulated mycelium and this may spur the successful development of microbial biocontrol agents in the future.  相似文献   

11.
AIM: To find a formulation of Epicoccum nigrum conidia that maintains a high viability over time and which proves efficient to biocontrol peach rot caused by Monilinia spp. METHODS AND RESULTS: We tested the effect of stabilizers and desiccants on the shelf-life of Epicoccum nigrum conidia. Conidial samples were dried for 40 min at 40 degrees C in a fluidized bed-dryer to obtain moisture contents <15%. The toxicity of additives was tested by assaying production of conidia in fermentations and germinability of the produced conidia: 50% PEG300, 10%-5% KCl (stabilizers) and 95.24% Cl(2)Ca (desiccant) significantly (P = 0.05) reduced conidial germination. To enhance shelf-life of dried conidia, nontoxic stabilizers were added at the following different stages of the production-drying process: (i) to substrate contained in bags before production, (ii) to conidial centrifuge pellets obtained after production, before filtering and drying, (iii) to conidial centrifuge pellets obtained after production, before adding talc and drying, and (iv) to conidial centrifuge pellets obtained after production, before adding silica powder and drying. Conidial germinability was tested at 0, 180 and 365 days after storage at room temperature. Shelf-life of formulations retaining the highest viability were conidia produced with 1% KCl or 50% PEG 8000, conidia dried with 2.5% methylcellulose, and conidia dried with 1% KCl + silica powder. All these formulations improved the shelf-life of E. nigrum conidia and significantly reduced brown rot on peaches. CONCLUSIONS: Our results show that additives improve the shelf-life of E. nigrum and assist controlling brown rot on peaches. SIGNIFICANCE AND IMPACT OF THE STUDY: New improved formulations of a biocontrol agent have been obtained which will improve the control of Monilinia on peach.  相似文献   

12.
The viability of conidia of Esteya vermicola, a potentially important biocontrol agent against the pinewood nematode Bursaphelenchus xylophilus, is usually determined by cultivation for 18–48 h in culture medium. As an alternative to this labor-intensive method, we have developed a rapid, simple, and low-cost staining method for assessing E vermicola conidia survival rates. A mixture of neutral red and methylene blue was found to be the most optimal among several stains that also included safranin O and Janus green B. This mixture stained nonviable conidia blue, in contrast to viable conidia, which were stained red in the cytoplasm and blue in the cell wall. This method may be particularly useful for traditional research laboratories, as it provides rapid results using common, relatively inexpensive laboratory equipment.  相似文献   

13.
Aims:  To study the population dynamics of Epicoccum nigrum on peaches and nectarines and to enhance its colonization on fruit surfaces to improve its biocontrol efficacy against brown rot.
Methods and Results:  Twelve surveys were performed to study E. nigrum populations and their effect on the number of the pathogenic Monilinia spp. conidia in peach orchards in Spain and Italy between 2002 and 2005. Fresh conidia and five different formulations of E. nigrum conidia were applied three to six times to peach and nectarine trees from full flowering to harvest. The size of the E. nigrum populations was determined from the number of colony-forming units and conidial numbers per flower or fruit. Treatment with all conidial formulations increased the size of the indigenous conidial population on peach surfaces.
Conclusions:  Formulations of E. nigrum having high viability are most effective against conidia of the pathogen when applied at pit hardening and during the month immediately before fruit harvest.
Significance and Impact of the Study:  Application of an E. nigrum conidial formulation decreased the number of conidia of Monilinia spp. on fruit surfaces during the growing season to the same extent as fungicides.  相似文献   

14.
Plectosphaerella cucumerina was identified as a potential bioherbicide for controlling Cirsium arvense in Canada and New Zealand. The current study evaluated production conditions using two isolates (one from each country) to determine whether the yield and shelf life of inoculum are suitable for mass production. Mycelial growth and sporulation in culture both increased from 15°C to 25°C and declined at higher temperatures with no mycelial growth at 37°C. The Canadian isolate produced fewer conidia than a New Zealand isolate. Potato dextrose-based liquid media with moderate to high concentrations of carbohydrates (25%, 50%, and 100%) maximised conidia production and these base media produced conidia with the highest germination rate (>80%) both at harvest and after 4 weeks stored at 4°C in 2.5% glycerol, 40% milk glycerol or after air drying. However, after 10-week storage, the conidia failed to germinate. Sporulation occurred during growth on all solid substrates tested (rice, rolled barley, and triticale), but conidial germination was highest on rice and barley, both before and after air drying. By contrast to conidia, 90% of mycelia-infested barley grains were viable after 3 years of storage at room temperature, although viability was lost by this time on the other substrates. This study has shown that the nutritional base is an important determinant of sporulation and shelf life for P. cucumerina. Although the yield of conidia in liquid medium was adequate to justify further development of P. cucumerina as a bioherbicide, improvement in its shelf life, or alternate formulation types that extend the shelf life, must be made for commercial efficiency.  相似文献   

15.
Aims: To prepare commercially acceptable formulations of Bacillus subtilis CPA‐8 by spray‐drying with long storage life and retained efficacy to control peach and nectarine brown rot caused by Monilinia spp. Methods and Results: CPA‐8 24‐h‐ and 72‐h‐old cultures were spray dried using 10% skimmed milk, 10% skimmed milk plus 10% MgSO4, 10% MgSO4 and 20% MgSO4 as carriers/protectants. All carriers/protectants gave good percentages of powder recovery (28–38%) and moisture content (7–13%). CPA‐8 survival varied considerably among spray‐dried 24‐h‐ and 72‐h‐old cultures. Seventy‐two hours culture spray dried formulations showed the highest survival (28–32%) with final concentration products of 1·6–3·3 × 109 CFU g?1, while viability of 24‐h‐old formulations was lower than 1%. Spray‐dried 72‐h‐old formulations were selected to subsequent evaluation. Rehydration of cells with water provided a good recovery of CPA‐8 dried cells, similar to other complex rehydration media tested. Spray‐dried formulations stored at 4 ± 1 and 20 ± 1°C showed good shelf life during 6 months, and viability was maintained or slightly decreased by 0·2–0·3‐log. CPA‐8 formulations after 4‐ and 6 months storage were effective in controlling brown rot caused by Monilinia spp. on nectarines and peaches resulting in a 90–100% reduction in disease incidence. Conclusions: Stable and effective formulations of biocontrol agent B. subtilis CPA‐8 could be obtained by spray‐drying. Significance and Impact of the Study: New shelf‐stable and effective formulations of a biocontrol agent have been obtained by spray‐drying to control brown rot on peach.  相似文献   

16.
The use of pesticides on sandy soils and on many non-agricultural areas entails a potentially high risk of water contamination. This study examined leaching of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) after bioaugmentation in sand with differently formulated and stored Sphingobium sp. T51 and at different soil moisture contents. Dry formulations of Sphingobium sp. T51 were achieved by either freeze drying or fluidised bed drying, with high initial cell viability of 67–85 %. Storage stability of T51 cells was related to formulation excipient/carrier and storage conditions. Bacterial viability in the fluidised bed-dried formulations stored at 25 °C under non-vacuum conditions was poor, with losses of at least 97 % within a month. The freeze-dried formulations could be stored substantially longer, with cell survival rates of 50 %, after 6 months of storage at the same temperature under partial vacuum. Formulated and long-term stored Sphingobium cells maintained their MCPA degradation efficacy and reduced MCPA leaching as efficiently as freshly cultivated cells, by at least 73 % when equal amounts of viable cells were used. The importance of soil moisture for practical field bioaugmentation techniques is discussed.  相似文献   

17.
We studied (a) the extent adhesion of Penicillium oxalicum conidia to tomato roots after application of P. oxalicum conidial formulations with or without stickers, (b) the relationship between the extent of conidial adhesion to roots and biocontrol of the conidial formulations against tomato wilt, and (c) colonisation of roots by P. oxalicum. Adhesion of P. oxalicum conidia to tomato roots occurred within the first minute of contact between the root and the conidial formulation and the bonding strength was sufficiently strong to prevent conidial removal from the roots. In addition, some formulations with stickers that increased conidial adhesion to roots improved the biocontrol of tomato wilt, when compared to that of formulations without stickers. A “dried conidia without stickers” with 0.025% Nu-Film 17 had no effect on the biocontrol of tomato wilt, despite good adherence of the conidia to the roots. The numbers of P. oxalicum conidia that adhered to the roots was constant for 60 days after application of a “dried conidia without stickers” conidial formulation. The significance of these results (speed of adhesion, number of adhered conidia, and variability of conidial external surface) are discussed in relation to the biocontrol success of tomato wilt using different types of conidial formulations with and without stickers.  相似文献   

18.
The viability and biomass production of three isolates of Kluyveromyces spp. in six different growth media were studied. All yeast isolates showed good growth in all of the media tested, but nutrient yeast dextrose broth (NYDB 75 %) and molasses soy meal (MSB) media were selected for further analyses. The adaptive response of the yeasts to heat shock and water stress was studied, revealing that 60 min of incubation at 45 °C and a water activity value of 0.95 aw were the appropriate conditions to adapt these yeasts for subsequent analyses. The physiological adaptation did not affect the ecological similarity between biocontrol agents and pathogen. The adapted yeasts also had a negative influence on the growth of Aspergillus flavus RCM89 mycelia and the accumulation of aflatoxin B1 levels in vitro. These results have important implications for optimizing the formulation process of proven biocontrol agents against A. flavus. In addition, the applications of physiological methods are necessary for increasing the performance of biocontrol agents. Moreover, the physiological methods could enhance survival under environmental stress conditions of biological control agents.  相似文献   

19.
The endoparasitic nematophagous fungus, Esteya vermicola, is a bio-control agent with demonstrated ability to attack pinewood nematode (Bursaphelenchus xylophilus). An optimized solution for the protection and preservation of E. vermicola conidia is needed in order to ensure their survival during transportation, preservation, and application. Five protectants, kaolin, arabinose, sorbitol, PEG8000, and Span 80, were selected from 34 agents. These were incorporated into calcium alginate gel capsules at the following concentrations: 10% kaolin, 0.1% Span 80, 1% arabinose, 5% sorbitol, and 5% PEG8000. The improved diffluent formula contained 69.9% soluble starch, 14% wheat flour, 5% PEG8000, 0.1% span 80, 1% arabinose and 10% skim milk. The viability of E. vermicola conidia preserved in the protectant (5% sorbitol and 20% PEG8000) at six temperatures,–70,–20, 4, 26, 37°C, and room temperature (uncontrolled), was also assessed. The highest viability after storage for one month was achieved at–70°C.  相似文献   

20.
Biocontrol of the whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) using entomopathogenic fungi has been a difficult challenge under greenhouse conditions. In order to select fungal isolates adapted to high temperature and extremely low moisture nine isolates of Lecanicillium lecanii (Zimmerman) Zare & W. Gams, L. attenuatum Zare & W. Gams and L. longisporum (Petch) Zare & W. Gams (Hypocreales: Clavicipitaceae) were evaluated. In vitro assays were performed to determine colony radial growth, conidial production and conidial germination in three water activity media (aw = 0.97, 0.98 and 1.00) at 28 and 32 °C. Virulence of Lecanicillium spp. isolates was evaluated against third instar T. vaporariorum on tomato plants at 23 °C. Colony radial growth, conidial production and germination decreased with the reduction in water activity, while 32 °C was extremely detrimental for all fungal isolates. However, some isolates were able to grow and produce conidia at low water activity and high temperature. Additionally, mortality above 60 % was recorded for one of these isolates. Practical implementation of biocontrol of T. vaporariorum under greenhouse production systems should consider the selection of those Lecanicillium isolates that show tolerance to the adverse environmental conditions in greenhouses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号