首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although several studies have been reported on the micropropagation of the pistachio and its rootstocks, to date none of them had been efficient on the mass production of these plants in bioreactor systems. Thus, the micropropagation of juvenile pistachio shoot tips and nodal buds was investigated in a temporary immersion bioreactor system (RITA®) and on a conventional semi-solid medium. Among the tested immersion conditions, immersion for 24 min every 16 h reduced vitrification and improved proliferation in the pistachio. Interactions were evident in immersion time and frequency in nodal segments. Nodal buds were better than shoot tips as the highest multiple shoot formation was recorded in MS medium containing 4 mg L?1 BA and 0.1 mg L?1 GA3 in RITA®. Although shoot tip necrosis (STN) was observed in shoots proliferated on semi-solid MS medium, such a symptom did not occur in shoots sprouted in the RITA®. Additionally, these optimized conditions were applied to nodal buds of mature male pistachio ‘Atl?’ and Pistacia rootstocks (P. khinjuk Stocks and P. atlantica Desf.), and the micropropagation in the bioreactor system, in comparison to the semi-solid medium, was also improved. Furthermore, in vitro rooting of pistachio plantlets, despite the lower range (27.5 %), was also achieved in RITA®. However, rooting was better on semi-solid medium for all tested species (ranged between 50 and 70 %). The results of this study showed that RITA® could be used for the mass propagation of pistachio and its rootstocks, as well as for other woody plant species.  相似文献   

2.
The present study concentrated on introducing a micropropagation protocol for a drought resistant genotype from Pyrus boissieriana, which is the second most naturally widespread pear species in Iran with proper physiological and medicinal properties. Proliferating microshoot cultures were obtained by placing nodal segments on MS medium supplemented with BAP and IBA or NAA. The highest number of shoots (27 shoots per explant) were obtained with 1.5 mg l?1 BAP and 0.05 mg l?1 IBA, but this combination did not produce shoots of desirable length (>1.7 cm). Combination of 1.75 mg l?1 BAP and 0.07 mg l?1 IBA was the best for the shoot multiplication in P. boissieriana with a sufficient number of shoot production (22.33 shoots per explant) and relatively more appropriate shoot length. The larger and greenish leaves were obtained when PG was added to the best multiplication treatment. Microshoot elongation was carried out in 1/2 and 1/4 MS medium containing 50–100 mg l?1 PG with different concentrations of IBA or NAA at intervals of 30–60 days. Significant increase in shoot length was detected after 45–60 days of culture in the presence of PG. The highest shoot length (8 cm) was recorded on 1/2 MS medium supplemented with 0.5 mg l?1 IBA and 100 mg l?1 PG. GA3 negatively affected number and length of shoots and generally caused generation of red leaves. The highest percentage of root induction (100%) and root length (9 cm) were obtained on 1/6 strength MS medium supplemented with 0.005 mg l?1 IBA. All plantlets were hardened when transferred to ex vitro conditions through a period of 25–30 days. The results suggest axillary shoot proliferation of P. boissieriana could successfully be employed for propagation of candidate drought resistant seedling.  相似文献   

3.
Nitric oxide (NO) plays diverse roles in the growth and development of plants. The effects of a NO donor, sodium nitroprusside (SNP), on shoot multiplication and regeneration of Vanilla planifolia Andrews have been studied. Nodal segments of V. planifolia were used as explants to initiate shoots. The number of shoots per explant showed a significant increase in the presence of SNP and more than 93% of explants formed shoots. Supplementation of 10.0 μM SNP to Murashige and Skoog (MS) basal medium containing 1.0 mg/L 6-benzylaminopurine (BAP) produced the highest number of shoots per explant (10.33) after 60 d of culture. However, in this treatment, shoot length (3.76 cm) was less than in the other treatments, except for the plant growth regulator-free MS medium. MS medium containing only 1.0 mg/L BAP produced the highest shoot length (4.49 cm) with a mean number of 6.26 shoots per explant. These findings indicate that NO stimulated shoot development and may be considered as an intermediary of adventitious shoot regeneration, as has been suggested for other plant species.  相似文献   

4.
Commercial micropropagation of sugarcane is largely determined by the clonal fidelity and the cost of plants produced. Rapid production of plants in vitro reduces the frequency of offtypes in many species. By exploiting the concept of transverse thin cell layer culture, we have developed a rapid, high frequency direct plant regeneration system, called SmartSett®, for commercial sugarcane cultivars grown in Australia. Similar to conventional micropropagation, labour remains the major cost of this plant production system. Hence, to reduce the labour component, we have integrated the SmartSett® system with the RITA® temporary immersion bioreactor. Thin transverse leaf sections or fragmented leaves cultured on agar-based SmartSett® shoot induction medium were used as the starting material for RITA®. Shoot initiation on semi-solid medium prior to transferring to RITA®, culture immersion frequency, explant size and genotype determined the productivity (number of plants produced per unit culture) of the system. Results obtained with cultivar Q165 indicate that explants cultured for 45 d on SmartSett® shoot induction medium were the most prolific, producing on average 275 shoots per vessel after 45 d of culture in RITA with 1 min immersion every 12 or 24 h. Using the fragmented tissue, 14-d-old explants and 3-mm leaf tissue fragments were the most productive. Experiments with three cultivars (Q117, Q165 and Q205) showed that RITA® culture conditions need to be optimised for each cultivar for maximum plant production.  相似文献   

5.
Summary A method for the micropropagation of Spathiphyllum cannifolium is presented using shoot tip proliferation onto Murashige and Skoog (MS) medium supplemented with different plant growth regulator concentrations and combinations. The proliferation responses were significantly influenced by the cytokinin type and concentrations. Supplementation of the medium with benzyladenine (BA; 4.44–13.32 μM) increased the shoot proliferation rate significantly as compared to other treatments. When cytokinins were used with auxin (indole-3-butyric acid, IBA and naphthalene acetic acid. NAA), the number of shoots per explant increased in comparison with treatments with BA alone. The largest number of shoots, 9.3 per explant, was obtained with 13.32 μM BA and 4.9 μM IBA. Different MS medium strengths and sucrose concentrations were used with the aim to stimulate in vitro shoot proliferation. Full MS medium with 30 gl−1 sucrose was found to be suitable for shoot tip culture of Spathiphyllum. Comparative studies between gelled medium and bioreactor culture [continuous immersion (with or without net) and temporary immersion in liquid media using ebb and flood] revealed that shoot multiplication and growth were more efficient in continuous immersion (with net) bioreactor with low cytokinin-supplemented media. Plantlets from the bioreactor were cultured hydroponically for 30 d and 100% of plants were rooted and acelimatized successfully. Rapid and efficient multiplication rate in bioreactor and successful transfer to greenhouse makes this protocol suitable for large-scale multiplication of this important foliage plant.  相似文献   

6.
The effects of thidiazuron (TDZ) pretreatment of shoot tips on Harpagophytum procumbens shoot proliferation and successive stages of micropropagation, i.e. rooting of regenerated shoots and acclimatization of plantlets to ex vitro conditions, were described in the present study. The best response in terms of shoot proliferation (about seven shoots/explant) and shoot length (3.2 ± 0.4 cm) was obtained when explants pretreated with 25 µmol L?1 TDZ for 6 h were cultured on Schenk and Hildebrandt medium containing indole-3-acetic acid (IAA) (0.57 µmol L?1) and 6-benzylaminopurine (BAP) (8 µmol L?1). Under these conditions, a 330 % increase in shoot multiplication over TDZ non-pretreatment culture was achieved and TDZ pretreatment shoots were longer compared to those in control culture (2.6 ± 0.3 cm). The TDZ pretreatment did not affect the percentage of rooted shoots, length of roots and number of roots formed per shoot. The rooted plantlets were transplanted from in vitro to pots with soil and grown during 1 year in the greenhouse. The hardening process was difficult and time-consuming. We found that the plants developed from the TDZ pretreated culture were superior to plants from non-pretreated culture in terms of survival rate and morphological features, such as shoot length, leaf size, flowering and earlier root tuberisation. Random amplified polymorphic DNA and inter-simple sequence repeat analyses of pretreatment with TDZ plants showed genetic similarity to non-pretreatment plants. We conclude that applying the strategy of initial explant pretreatment with TDZ may be valuable for the improvement in H. procumbens in vitro propagation.  相似文献   

7.
Development of in vitro techniques has enabled rapid clonal propagation, regeneration, and multiplication of genetically manipulated superior clones, production of secondary metabolites, and ex situ conservation of valuable germplasm. This has been possible not only due to the refinements of culture methodologies and applications of cutting-edge areas of molecular biology but also due to the judicious inclusion of engineering principles and methods to improve and refine the system. In the present study, we used engineering principles and methods to transform basic in vitro techniques into commercially viable technologies. We investigated two types of temporary immersion systems (TIS), two types of lighting, and two different gas exchange systems during in vitro banana (Musa spp. cv. 'Grande naine') shoot cultures. After 7 wks, all banana shoots cultured in standard TIS (5-L glass vessels, type 1) showed superior vegetative growth for the evaluated parameters. We also found that illumination provided by light emission diodes (LEDs) was superior to the use of white fluorescent lamps at the same light intensity (40 μmol m?2 s?1). Shoots treated with compressed air for immersion and additional gas exchange during the culture period in the glass vessel of TIS systems resulted in higher propagation rates and a larger number of shoots harvested as well as a larger number of roots formed per shoot after the 7-wk culture period.  相似文献   

8.
Castilleja tenuiflora, a species highly valued for its medicinal properties, is threatened in the wild. We evaluated the effects of six different immersion cycles in a temporary immersion bioreactor on C. tenuiflora shoot growth, proliferation rate, phenolics content, flavonoid content, and antioxidant activity. We also evaluated the regeneration capacity of the shoots. The highest proliferation rate (nine shoots per explant) was obtained using an immersion cycle of 5 min every 12 h, and the longest shoots (38.8?±?1.9 mm) were obtained using an immersion cycle of 5 min every 24 h. Shoots obtained from immersion cycles of 30 min every 24 h or 5 min every 24 h showed 100% rooting efficiency. Shoots obtained from immersion cycles of 30 min every 3 h or 30 min every 12 h accumulated H2O2, developed abnormal stomata, and showed symptoms of hyperhydricity. These characteristics were associated with a low survival rate (16–80%) when the plants were transferred to potting mix. The shoots from an immersion cycle of 30 min every 24 h showed the highest total phenolics content, which coincided with the highest antioxidant activity in the 2,2′-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) free-radical scavenging assay (161.74?±?10.06 μmol Trolox/g dry weight (DW)). The shoots from an immersion cycle of 5 min every 24 h showed the highest activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging assay, and those from an immersion cycle of 5 min every 3 h showed the strongest reducing power. These results show that temporary immersion culture represents a reliable and efficient method for in vitro micropropagation of C. tenuiflora.  相似文献   

9.
A micropropagation system for Bauhinia racemosa Lam. was developed involving axillary shoot proliferation and ex vitro rooting using nodal explants obtained from mature tree. MS medium with 3.0 mg l?1 BA (6-benzyladenine) was optimum for shoot bud induction. For shoot multiplication, mother explants were transferred repeatedly on medium containing low concentration of BA (0.75 mg l?1). Number of shoots was increased up to two passages and decreased thereafter. Shoot multiplication was further enhanced on MS medium containing 0.25 mg l?1 each of BA and Kin (Kinetin) with 0.1 mg l?1 of NAA (α-naphthalene acetic acid). Addition of 0.004 mg l?1 TDZ (thidiazuron) increased the rate of shoot multiplication and 21.81 ± 1.26 shoots per culture vessel were obtained. In vitro regenerated shoots were rooted under ex vitro conditions treated with 400 mg l?1 IBA (indole-3-butyric acid) for 7 min on sterile soilrite. After successful hardening in greenhouse, ex vitro rooted plants were transferred to the field conditions with ≈85% of survival rate. Micromorphological changes were observed on leaf surface i.e. development of vein density and trichomes and stomatal appearance, when plants were subjected to environmental conditions. This is the first report on in vitro regeneration of B. racemosa from mature tree.  相似文献   

10.
The effects of the culture system used for embryo proliferation were investigated with the aim of improving multiplication rates and somatic embryo quality in two embryogenic lines of Quercus robur derived from mature trees (B-17 and Sainza). Embryo proliferation medium was defined following comparison of five different semi-solid media, and the highest multiplication rates (based on the total number of embryos and number of cotyledonary-shaped embryos) were achieved with medium supplemented with 0.44 μM benzyladenine for both lines. Embryo proliferation on semi-solid medium was compared with that obtained by a temporary immersion system (TIS), in which four cycles with immersion frequencies of 1 min every 6, 8, 12 or 24 h were tested. TIS promoted a significant increase in proliferated embryo biomass, with the growth index (GI) two and four times higher than in semi-solid medium in B-17 and Sainza genotypes, respectively. An immersion cycle of 1 min every 8 or 12 h produced approximately 700 somatic embryos (B-17) and 1,500 somatic embryos (Sainza) per RITA® bioreactor, with significant differences in the latter genotype with respect to gelled medium. TIS had also a significant effect on somatic embryo synchronization as it enabled a higher production of cotyledonary embryos (90%), which represents increases of 14% (B-17) and 20% (Sainza) with respect to gelled medium. For germination of embryos proliferated in TIS two maturation systems were applied: (1) culture in semi-solid medium containing 6% sorbitol or (2) culture by TIS (without sorbitol) at a frequency of 1 min immersion every 48 h. Germination ability was higher after maturation on sorbitol medium and plantlet conversion occurred in 48% (B-17) and 13% (Sainza) embryos. TIS produced large numbers of well-developed cotyledonary embryos, hence reduced the cost and labor.  相似文献   

11.
The efficiency of micropropagation of double-node shoots of hop (Humulus lupulus L. cv. Tettnanger) was evaluated using semi-solid and liquid culture medium in RITA® temporary immersion bioreactors. The highest fresh and dry weight of shoots, average number of shoots, and multiplication rate were obtained using the RITA® system, whereas the longest shoots were obtained on semi-solid medium. Moreover, shoot length was affected significantly by the inoculum density of double-node shoots in RITA® vessels. In addition, the RITA® bioreactors were suitable for shoot induction from organogenic calli. The percentage of shoot induction and the shoot fresh and dry weights were significantly higher in the RITA® system than in semi-solid medium. The age of organogenic calli and inoculum density significantly affected the induction of shoots from organogenic calli. The optimum conditions for DNA delivery into hop organogenic calli using the biolistic particle delivery system were also determined. Organogenic calli were bombarded with the plasmid pSR5-2 (gusA and nptII) varying helium pressure (900, 1,100, or 1,350 psi) and target distance (6, 9, or 12 cm). The highest gusA transient activity was obtained using a pressure of 900 psi and a target distance of 6 cm. For stable genetic transformation, 3-wk-old organogenic calli were bombarded with the plasmid pCAMBIA1303 (gusA, mgfp5, and hpt) using these optimum conditions. Stable gusA expression was observed in organogenic calli and shoots after 4 wk of culture on selection medium containing 2.5 mg l?1 hygromycin. The presence of the mgfp5 gene in the hop genome was confirmed by PCR.  相似文献   

12.
Solanum nigrum Linn., known for hepatoprotective and antioxidant properties, is extensively harvested from the wild. Supply is far short of demand, necessitating requirement of efficient in vitro propagation protocols. Nodal explants from wild S. nigrum plants were cultured in vitro in MS medium supplemented with 3.0 mg L?1 IAA, 0.5 mg L?1 BAP and gelled with 0.8 % agar. After 30 days, shoots buds were transferred to liquid MS medium of same composition. Subsequent subculture was carried out every 6 days. Shoot doubling time in solid and liquid media was calculated. Total phenolics, proanthocyanidin and flavonoid contents, ABTS.+ and hydrogen peroxide radical scavenging antioxidant capacity of wild and in vitro aqueous leaf extracts were estimated and compared. In MS agar, 18 shoot buds were produced per explant after 30 days of culture, with shoot doubling time of 7.11 days. In liquid media, 21 shoots per explant were produced in 6 days, with a 5-fold higher multiplication rate and shoot doubling time of 1.37 days. Leaves were morphologically similar to those of wild plants. Total phenolics, proanthocyanidin and flavonoid contents of in vitro leaf extracts was 5–10 times higher than that of wild plants while ABTS.+ and H2O2 radical scavenging activity was similar in both extracts. Liquid media is better suited for in vitro propagation of S. nigrum since enhanced multiplication rate was observed with shorter subculture intervals. Moreover, plants retained normal morphology and antioxidant property.  相似文献   

13.
Finger millet (Eleusine coracana (L.) Gaertn.), an economically important food crop is cultivated widely in the arid and semi-arid tropics of Africa and Asia. In the present study, an efficient micropropagation protocol has been established for finger millet genotypes CO 9, CO (Ra) 14 and GPU 28 using shoot apical meristems (SAMs). Shoot proliferation medium (SPM) containing Murashige and Skoog’s (MS) medium amended with 3.0 mg/l 6-benzylaminopurine produced the highest shoot regeneration frequency (86.60%) with an average of 26.45?±?0.34 shoots per explant and 6.26?±?0.38 cm shoot length in CO 9. An increase in the number of shoots per explant was observed when SAMs were repeatedly sub-cultured in SPM at 2 weeks interval for 8 weeks. Rooting of the regenerated shoots was achieved in full-strength MS medium containing indole-3-acetic acid (IAA) or indole-3-butyric acid. Rooting medium containing 0.25 mg/l IAA exhibited highest rooting frequency (100%) with an average root length of 4.44?±?0.15 cm. In vitro rooted shoots transferred to the field conditions resulted in 100% survivability.Genetic fidelity of 3-month old mother plant and micropropagated plantlets was confirmed using 3′-anchored dinucleotide inter simple sequence repeats. A total of 115 amplicons generated for CO 9, CO (Ra) 14 and GPU 28 were monomorphic, revealing no variation among mother plant and micropropagated plantlets. Thus, SAMs could serve as a suitable explant for the mass multiplication of true-to-type plants and genetic transformation in finger millet.  相似文献   

14.
Airlift bioreactors were programmed for continuous and temporary immersion culture to investigate factors that affect the rhizome proliferation, shoot formation, and plantlet regeneration of Cymbidium sinense. During rhizome proliferation, the continuous immersion bioreactor system was used to explore the effects of activated charcoal (AC) in the culture medium, inoculation density, and air volume on rhizome differentiation and growth. The optimum conditions for obtaining massive health rhizomes were 0.3 g l?1 AC in the culture medium, 7.5 g l?1 inoculation density, and 150 ml min?1 air. In addition, the temporary immersion bioreactor system was used for both shoot formation and plantlet regeneration. Supplementing 4 mg l?1 6-benzylaminopurine and 0.2 mg l?1 naphthalene acetic acid (NAA) to the culture medium promoted shoot induction from the rhizome. Cutting the rhizome explants into 1 cm segments was better for massive shoot formation than cutting into 0.25 and 0.5 cm explant segments. NAA promoted plantlet regeneration and the rooting rate (94.7 %), with whole plantlets growing well in culture medium containing 1.0 mg l?1 NAA. Therefore, applying bioreactors in C. sinense micropropagation is an efficient way for scaling up the production of propagules and whole plantlets for the industrial production of high-quality seedlings.  相似文献   

15.
Rehmannia glutinosa Libosch., a valuable medicinal plant, was successfully propagated in vitro using shoot tip explants. Shoot multiplication was performed in glass tubes and in a nutrient sprinkle bioreactor. A mixture of 0.1 mg L?1 indole-3-acetic acid (IAA) and 1.0 mg L?1 of 6-benzylaminopurine in Murashige and Skoog (MS) agar-solidified medium proved the best combination for multiple shoot induction, yielding 8.2 shoots per explant after 4 weeks of culture in glass tubes. The number of shoots increased to 21 per explant when the same combination of growth regulators was used in a nutrient sprinkle bioreactor. The shoots rooted with a frequency of 93 % after 6 weeks of culture on MS agar medium supplemented with IAA (0.1 mg L?1) before being acclimatized in the greenhouse. The antioxidant activities of methanolic extracts from the leaves and roots of the in vitro-regenerated plants of R. glutinosa cultivated in the greenhouse were evaluated using four in vitro assays: scavenging of free radicals (DPPH and ABTS), transition metal reduction and total antioxidant activity phosphomolybdenum test. In all cases, the methanolic extract from leaves demonstrated better antioxidant activity than those taken from roots. A strong correlation was found between total phenolic and flavonoid content, and the antioxidant capacity of the studied extracts.  相似文献   

16.
Cedrela odorata L. is a valuable tropical tree widely appreciated for its wood. This species confronts serious problems due to both overexploitation of its natural populations and its susceptibility to the Meliaceae borer Hypsipyla grandella, which destroys the apical meristems and produces structural deformations. The rapid introduction of new varieties through clonal forestry has been demonstrated to be the most effective way to improve the production of perennial plantation species. In this work, we report both a protocol for the rejuvenation of elite mature trees of C. odorata and the optimization of an in vitro culture system to scale up micropropagation. Several media formulations and the use of temporary immersion culture in bioreactors were evaluated. The addition of 20% coconut water to TY17 medium increased the number of adventitious shoots from hypocotyl segments to an average number of 4.68 shoots per explant. To replace coconut water and to define the culture medium, several cytokinins were tested at various concentrations; however, none of them produced the effect of coconut water. Rejuvenation of elite mature individuals was investigated by ex vitro grafting of mature tree twigs onto 3-mo-old juvenile trees. Although the grafting had a positive effect on the micropropagation of mature material, the multiplication rate of 1.5 new shoots per explant did not compare to the organogenic capacity of younger materials. Shoot and root elongation as well as acclimatization to ex vitro conditions were carried out in a temporary immersion culture of juvenile material using BioMINT® bioreactors. A 3.5-fold increase in shoot elongation and a 4-fold increase in root elongation were achieved compared to material cultured on semisolid media. Furthermore, this culture system allowed for 98% effectiveness in the soil adaptation of the in vitro-grown plants. The scaled-up multiplication capacity over a period of 6 mo calculated for the system is above 16,000 plants per mother plant with young materials but is only 125 with mature materials.  相似文献   

17.
An efficient method of Coelogyne cristata mass propagation was developed using segment of protocorm-like bodies (PLBs) (3 mm2 in size). It was observed that ½ MS medium showed to be more effective to induce shoots through PLBs segment. The explants when cultured on ½ MS media containing TDZ and CP showed relatively superior effect on shoot regeneration as compared to the media containing TDZ alone or in combination with BP. Addition of BP and CP to the medium containing NAA and BA combinations proved distinctly better for shoot multiplication than that of the medium with NAA and BA combinations alone. The highest percentage of explants producing shoots, with a maximum average of 8.1 per explant, was induced on the medium supplemented with 1.0 mg l?1 NAA and 0.5 mg l?1 BA with CP. Shoots produced an average of 15 roots per explant on ½ MS medium supplemented with 2.0 mg l?1 IBA and BP. The 4 cm height plantlets with well-developed roots were successfully acclimatized. The results suggest that CP and BP can be used effectively to initiate shooting and rooting of Coelogyne cristata. Ploidy analysis of regenerated plants using flow cytometry revealed the same ploidy level (diploid). This efficient and reliable protocol could be useful for mass multiplication and germplasm conservation of the wild medicinal orchid.  相似文献   

18.
We developed a novel large-scale micropropagation pathway for date palm (Phoenix dactylifera L.) based on organogenesis. We obtained organogenic stems from shoot tip explants of the Moroccan date palm cultivar Najda, and investigated shoot proliferation from these organogenic stems in vitro on various media; Beauchesne medium (BM) and Murashige and Skoog medium (MS) at full-strength, half-strength, and one-third-strength, containing various concentrations (0, 0.25, 0.5, and 1 mg/L) of 2-naphthoxyacetic acid (NOAA) and kinetin. The optimal medium during the multiplication phase was half-strength Murashige and Skoog medium (MS/2) supplemented with 0.5 mg/L NOAA and 0.5 mg/L kinetin (23.5 morphologically superior shoots per explant, with low vitrification rates). For the shoot elongation phase, shoots were transferred to the same proliferation medium, or to MS or MS/2 media without plant growth regulators (PGRs). Shoots elongated rapidly and showed a high rate of root formation on media supplemented with PGRs. For example, on MS/2 medium containing 1 mg/L NOAA and 1 mg/L kinetin, the average shoot length was 15.1 cm, the average number of roots per shoot was 6.2, and their average length was 3.4 cm. On PGR-free media, shoots were shorter with wider and greener leaves, and had fewer roots. The plantlets were transferred to a greenhouse for acclimation. The survival rate after 2 months was related to the medium used during the elongation phase; >90 % of shoots that were cultured on PGR-free media survived, while there was a poor survival rate of shoots that had been cultured on media containing PGRs.  相似文献   

19.
Here, we report an efficient and widely applicable method for cryopreservation of Malus shoot tips by encapsulation–dehydration using adventitious shoots. Shoots were induced from leaf segments cultured on a shoot induction medium containing 2–3 mg L?1 thidiazuron, depending on genotype, and 0.5 mg L?1 indole-3-butyric acid. Shoot tips (3 mm in length) containing six leaf primordia excised from 11-wk-old adventitious shoots were encapsulated and precultured with 0.5 M sucrose for 5 d, followed by air-drying for 6 h prior to direct immersion in liquid nitrogen. With our protocol, we obtained a mean organogenesis rate of 100%, a mean of 4.5 adventitious shoots per explant (leaf segment), and a mean shoot recovery of 57.0% from cryopreserved shoot tips in four Malus species. Inter-simple sequence repeat (ISSR) analysis did not reveal any polymorphic bands in regenerants recovered from either leaf segments or cryopreserved shoot tips of ‘Gala’. To the best of our knowledge, this is the first report on cryopreservation of Malus shoot tips using adventitious shoots derived from leaf segments and is the most widely applicable protocol so far reported for cryopreservation of Malus. Establishment of this protocol provides an alternative means for cryopreservation of Malus.  相似文献   

20.
An efficient in vitro propagation of Samanea saman (rain tree) protocol has been successfully developed using nodal explants from a 20-year-old tree. Higher percentage (76 %) of explants produced up to five shoots per explant on Murashige and Skoog (MS) medium supplemented with 2 mg L?1 6-benzyladenine (BA), 0.1 mg L?1 gibberellic acid (GA3) and 100 mg L?1 casein hydrolysate after 3 weeks of culture. When explants were subcultured to fresh medium after harvesting first batch of shoots, more shoots could be generated (another eight shoots per explant). Shoot elongation was achieved (3 cm) when shoots were cultured on MS medium supplemented with 0.25 mg L?1 BA and 0.75 mg L?1 GA3. In vitro generated shoots rooted on MS medium fortified with 0.75 mg L?1 indole-3-butyric acid plus 0.1 % of activated charcoal. A higher percentage of explant response and shoots per explant were obtained on MS medium with BA and GA3. Each responsive nodal explant yields an average of 15 rooted plants within a period of 10 weeks. Rooted plantlets were successfully acclimatized in green house with a survival rate of 90 %. Micropropagated plants were tested for genetic stability using simple sequence repeats (SSR) markers. Use of the 12 high-resolution SSR markers revealed the exact same genetic profile between the mother tree (donor) and micropropagated plants, suggesting the genetic fidelity of our micropropagation protocol. The same protocol was also used successfully in propagating a “Golden Rain Tree” although response of explant and efficiency of propagation was much lower. This protocol will be useful for germplasm preservation/large scale production of true-to-type clones of desirable genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号