首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

2.
Sucrose-phosphatase (SPP) catalyzes the final step in the pathway of sucrose biosynthesis in both plants and cyanobacteria, and the SPPs from these two groups of organisms are closely related. We have crystallized the enzyme from the cyanobacterium Synechocystis sp PCC 6803 and determined its crystal structure alone and in complex with various ligands. The protein consists of a core domain containing the catalytic site and a smaller cap domain that contains a glucose binding site. Two flexible hinge loops link the two domains, forming a structure that resembles a pair of sugar tongs. The glucose binding site plays a major role in determining the enzyme's remarkable substrate specificity and is also important for its inhibition by sucrose and glucose. It is proposed that the catalytic reaction is initiated by nucleophilic attack on the substrate by Asp9 and involves formation of a covalent phospho-Asp9-enzyme intermediate. From modeling based on the SPP structure, we predict that the noncatalytic SPP-like domain of the Synechocystis sucrose-phosphate synthase could bind sucrose-6(F)-phosphate and propose that this domain might be involved in metabolite channeling between the last two enzymes in the pathway of sucrose synthesis.  相似文献   

3.
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl-dependent enzyme that catalyzes an essential step in polyamine biosynthesis. The polyamines are required for cell growth, and the biosynthetic enzymes are targets for antiproliferative drugs. The function of AdoMetDC is regulated by the polyamine-precursor putrescine in a species-specific manner. AdoMetDC from the protozoal parasite Trypanosoma cruzi requires putrescine for maximal enzyme activity, but not for processing to generate the pyruvoyl cofactor. The putrescine-binding site is distant from the active site, suggesting a mechanism of allosteric regulation. To probe the structural basis by which putrescine stimulates T. cruzi AdoMetDC we generated mutations in both the putrescine-binding site and the enzyme active site. The catalytic efficiency of the mutant enzymes, and the binding of the diamidine inhibitors, CGP 48664A and CGP 40215, were analyzed. Putrescine stimulates the k(cat)/K(m) for wild-type T. cruzi AdoMetDC by 27-fold, and it stimulates the binding of both inhibitors (IC(50)s decrease 10-20-fold with putrescine). Unexpectedly CGP 48664A activated the T. cruzi enzyme at low concentrations (0.1-10 microM), while at higher concentrations (>100 microM), or in the presence of putrescine, inhibition was observed. Analysis of the mutant data suggests that this inhibitor binds both the putrescine-binding site and the active site, providing evidence that the putrescine-binding site of the T. cruzi enzyme has broad ligand specificity. Mutagenesis of the active site identified residues that are important for putrescine stimulation of activity (F7 and T245), while none of the active site mutations altered the apparent putrescine-binding constant. Mutations of residues in the putrescine-binding site that resulted in reduced (S111R) and enhanced (F285H) catalytic efficiency were both identified. These data provide evidence for coupling between residues in the putrescine-binding site and the active site, consistent with a mechanism of allosteric regulation.  相似文献   

4.
Cytosolic sulfotransferases (SULTs) are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specificity, catalytic activity and substrate inhibition of SULT1A1. We have determined five new structures of SULT1A1 in complex with different acceptors, and utilized a directed evolution approach to generate SULT1A1 mutants with enhanced thermostability and increased catalytic activity. We found that active site plasticity enables binding of different acceptors and identified dramatic structural changes in the SULT1A1 active site leading to the binding of a second acceptor molecule in a conserved yet non-productive manner. Our combined approach highlights the dominant role of SULT1A1 structural flexibility in controlling the specificity and activity of this enzyme.  相似文献   

5.
To elucidate the roles of conserved Asp residues of Bacillus cereus sphingomyelinase (SMase) in the kinetic and binding properties of the enzyme toward various substrates and Mg2+, the kinetic data on mutant SMases (D126G and D156G) were compared with those of wild type (WT) enzyme. The stereoselectivity of the enzyme in the hydrolysis of monodispersed short-chain sphingomyelin (SM) analogs and the binding of Mg2+ to the enzyme were not affected by the replacement of Asp126 or Asp156. The pH-dependence curves of kinetic parameters (1/Km and kcat) for D156G-catalyzed hydrolysis of micellar SM mixed with Triton X-100 (1:10) and of micellar 2-hexadecanoylamino-4-nitrophenylphosphocholine (HNP) were similar in shape to those for WT enzyme-catalyzed hydrolysis. On the other hand, the curves for D126G lacked the transition observed for D156G and WT enzymes. Comparison of the values and the shape of pH-dependence curves of kinetic parameters indicated that Asp126 of WT SMase enhances the enzyme's catalytic activity toward both substrates and its binding of HNP but not SM. The deprotonation of Asp126 enhances the substrate binding and slightly suppresses the catalytic activity toward both substrates. Asp156 of WT SMase acts to decrease the binding of both substrates and the catalytic activity to HNP but not SM. From the present study and the predicted three-dimensional structure of B. cereus SMase, Asp126 was thought to be located close to the active site, and its ionization was shown to affect the catalytic activity and substrate binding.  相似文献   

6.
To elucidate how non-active site residues support the catalytic function, five selected residues of AdGSTD3-3 isoenzyme were changed to AdGSTD1-1 residues by means of site-directed mutagenesis. Analysis of the kinetic parameters indicated that Cys69Gln and Asp150Ser showed marked differences in Vmax and Km compared with the wild type enzyme. Both residues were characterized further by replacement with several amino acids. Both the Cys69 and Asp150 mutants showed differences with several GST substrates and inhibitors including affecting the interactions with pyrethroid insecticides. Cys69 and Asp150 mutants possessed a decreased half-life relative to the wild type enzyme. The Asp150 mutation appears to affect neighboring residues that support two important structural motifs, the N-capping box and the hydrophobic staple motif. The Cys69 mutants appeared to have subtle conformational changes near the active site residues resulting in different conformations and also directly affecting the active site region. The results show the importance of the cumulative effects of residues remote from the active site and demonstrate that minute changes in tertiary structure play a role in modulating enzyme activity.  相似文献   

7.
Coproporphyrinogen oxidase (CPO) is the sixth enzyme in the heme biosynthetic pathway, catalyzing two sequential oxidative decarboxylations of propionate moieties on coproporphyrinogen-III forming protoporphyrinogen-IX through a monovinyl intermediate, harderoporphyrinogen. Site-directed mutagenesis studies were carried out on three invariant amino acids, aspartate 400, arginine 262, and arginine 401, to determine residue contribution to substrate binding and/or catalysis by human recombinant CPO. Kinetic analyses were performed on mutant enzymes incubated with three substrates, coproporphyrinogen-III, harderoporphyrinogen, or mesoporphyrinogen-VI, in order to determine catalytic ability to perform the first and/or second oxidative decarboxylation. When Asp400 was mutated to alanine no divinyl product was detected, but the production of a small amount of monovinyl product suggested the K(m) value for coproporphyrinogen-III did not change significantly compared to the wild-type enzyme. Upon mutation of Arg262 to alanine, CPO was again a poor catalyst for the production of a divinyl product, with a catalytic efficiency <0.01% compared to wild-type, including a 15-fold higher K(m) for coproporphyrinogen-III. The efficiency of divinyl product formation for mutant enzyme Arg401Ala was approximately 3% compared to wild-type CPO, with a threefold increase in the K(m) value for coproporphyrinogen-III. These data suggest Asp400, Arg262, and Arg401 are active site amino acids critical for substrate binding and/or catalysis. Possible roles for arginine 262 and 401 include coordination of carboxylate groups of coproporphyrinogen-III, while aspartate 400 may initiate deprotonation of substrate, resulting in an oxidative decarboxylation.  相似文献   

8.
Structure and possible catalytic residues of Taka-amylase A   总被引:39,自引:0,他引:39  
A complete molecular model of Taka-amylase A consisting of 478 amino acid residues was built with the aid of amino acid sequence data. Some typical structural features of the molecule are described. A model fitting of an amylose chain in the catalytic site of the enzyme showed a possible productive binding mode between substrate and enzyme. On the basis of the difference Fourier analysis and the model fitting study, glutamic acid (Glu230) and aspartic acid (Asp297), which are located at the bottom of the cleft, were concluded to be the catalytic residues, serving as the general acid and base, respectively.  相似文献   

9.
hGAPDS (human sperm-specific glyceraldehyde-3-phosphate dehydrogenase) is a glycolytic enzyme essential for the survival of spermatozoa, and constitutes a potential target for non-hormonal contraception. However, enzyme characterization of GAPDS has been hampered by the difficulty in producing soluble recombinant protein. In the present study, we have overexpressed in Escherichia coli a highly soluble form of hGAPDS truncated at the N-terminus (hGAPDSΔN), and crystallized the homotetrameric enzyme in two ligand complexes. The hGAPDSΔN-NAD+-phosphate structure maps the two anion-recognition sites within the catalytic pocket that correspond to the conserved Ps site and the newly recognized Pi site identified in other organisms. The hGAPDSΔN-NAD+-glycerol structure shows serendipitous binding of glycerol at the Ps and new Pi sites, demonstrating the propensity of these anion-recognition sites to bind non-physiologically relevant ligands. A comparison of kinetic profiles between hGAPDSΔN and its somatic equivalent reveals a 3-fold increase in catalytic efficiency for hGAPDSΔN. This may be attributable to subtle amino acid substitutions peripheral to the active centre that influence the charge properties and protonation states of catalytic residues. Our data therefore elucidate structural and kinetic features of hGAPDS that might provide insightful information towards inhibitor development.  相似文献   

10.
Based on three-dimensional model of the bifunctional enzyme Destabilase-Lysozyme (mlDL-Ds2) in complex with trimer of N-acetylglucosoamine (NAG)3 the functional role of the stereochemically based group of amino acids (Glu14, Asp26, Ser 29, Ser31, Lys38, His92), in manifestation of glycosidase and isopeptidase activities has been elucidated. By method of site-directed mutagenesis it has been shown that mlDL glycosidase active site includes catalytic Glu14 and Asp26, and isopeptidase site functions as Ser/Lys dyad presented by catalytic residues Lys38 and Ser29. Thus, among the invertebrate lysozymes mlDL presents first example of the bifunctional enzyme with identified position of the isopeptidase active site and localization of the corresponding catalytic residues.  相似文献   

11.
Despite extensive investigations, the physiological role of the polyol pathway enzyme-aldose reductase (AR) remains obscure. While the enzyme reduces glucose in vivo and in vitro, kinetic and structural studies indicate inefficient carbohydrate binding to the active site of the enzyme. The active site is lined by hydrophobic residues and appears more compatible with the binding of medium- to long-chain aliphatic aldehydes or hydrophobic aromatic aldehydes. In addition, our recent studies show that glutathione (GS) conjugates are also reduced efficiently by the enzyme. For instance, the GS conjugate of acrolein is reduced with a catalytic efficiency 1000-fold higher than the parent aldehyde, indicating specific recognition of glutathione by the active site residues of AR. An increase in the catalytic efficiency upon glutathiolation was also observed with trans-2-nonenal, trans-2-hexenal and trans, trans-2,4-decadienal, establishing that enhancement of catalytic efficiency was specifically due to the glutathione backbone and not specific to the aldehyde. Structure-activity relationships with substitution or deletion of amino acids of GSH indicated specific interactions of the active site with gamma-Glu1 and Cys of GSH. Molecular modeling revealed that the glutathione-propanal conjugate could bind in two distinct orientations. In orientation 1, gamma-Glu1 of the conjugate interacts with Trp20, Lys21 and Val47, and Gly3 interacts with Ser302 and Leu301, whereas in orientation 2, the molecule is inverted with gamma-Glu1 interacting with Ser302, and Leu301. Taken together, these data suggest that glutathiolation of aldehydes enhances their compatibility with the AR active site, which may be of physiological significance in detoxification of endogenous and xenobiotic aldehydes.  相似文献   

12.
We report a multifaceted study of the active site region of human pancreatic alpha-amylase. Through a series of novel kinetic analyses using malto-oligosaccharides and malto-oligosaccharyl fluorides, an overall cleavage action pattern for this enzyme has been developed. The preferred binding/cleavage mode occurs when a maltose residue serves as the leaving group (aglycone sites +1 and +2) and there are three sugars in the glycon (-1, -2, -3) sites. Overall it appears that five binding subsites span the active site, although an additional glycon subsite appears to be a significant factor in the binding of longer substrates. Kinetic parameters for the cleavage of substrates modified at the 2 and 4' ' positions also highlight the importance of these hydroxyl groups for catalysis and identify the rate-determining step. Further kinetic and structural studies pinpoint Asp197 as being the likely nucleophile in catalysis, with substitution of this residue leading to an approximately 10(6)-fold drop in catalytic activity. Structural studies show that the original pseudo-tetrasaccharide structure of acarbose is modified upon binding, presumably through a series of hydrolysis and transglycosylation reactions. The end result is a pseudo-pentasaccharide moiety that spans the active site region with its N-linked "glycosidic" bond positioned at the normal site of cleavage. Interestingly, the side chains of Glu233 and Asp300, along with a water molecule, are aligned about the inhibitor N-linked glycosidic bond in a manner suggesting that these might act individually or collectively in the role of acid/base catalyst in the reaction mechanism. Indeed, kinetic analyses show that substitution of the side chains of either Glu233 or Asp300 leads to as much as a approximately 10(3)-fold decrease in catalytic activity. Structural analyses of the Asp300Asn variant of human pancreatic alpha-amylase and its complex with acarbose clearly demonstrate the importance of Asp300 to the mode of inhibitor binding.  相似文献   

13.
J H Shim  S J Benkovic 《Biochemistry》1999,38(31):10024-10031
Site-directed mutagenesis followed by studies of the pH dependence of the kinetic parameters of the mutants has been used to probe the role of the active site residues and loops in catalysis by glycinamide ribonucleotide transformylase (EC 2.1.2.2). The analysis of the mutants of the strictly conserved active site residues, His108 and Asp144, revealed that His108 acts in a salt bridge with Asp144 as a general acid catalyst with a pK(a) value of 9.7. Asp144 also plays a key role in the preparation of the active site geometry for catalysis. The rate-limiting step in the pH range of 6-10 appears to be the catalytic steps involving tetrahedral intermediates, supported by the observation of a pL (L being H or D)-independent solvent deuterium isotope effect of 2. The ionization of the amino group of glycinamide ribonucleotide both as a free and as a bound form dominates the kinetic behavior at low pH. The analysis of a mutation, H121Q, within the loop spanning amino acids 111-131 suggests the closure of the loop is involved in the binding of the substrate. The kinetic behavior parallels pH effects revealed by a series of X-ray crystallographic structures of the apoenzyme and inhibitor-bound enzyme [Su, Y., Yamashita, M. M., Greasley, S. E. , Mullen, C. A., Shim, J. H., Jennings, P. A., Benkovic, S. J., and Wilson, I. A. (1998) J. Mol. Biol. 281, 485-499], permitting a more exact formulation of the probable catalytic mechanism.  相似文献   

14.
Homoserine transacetylase catalyzes one of the required steps in the biosynthesis of methionine in fungi and several bacteria. We have determined the crystal structure of homoserine transacetylase from Haemophilus influenzae to a resolution of 1.65 A. The structure identifies this enzyme to be a member of the alpha/beta-hydrolase structural superfamily. The active site of the enzyme is located near the end of a deep tunnel formed by the juxtaposition of two domains and incorporates a catalytic triad involving Ser143, His337, and Asp304. A structural basis is given for the observed double displacement kinetic mechanism of homoserine transacetylase. Furthermore, the properties of the tunnel provide a rationale for how homoserine transacetylase catalyzes a transferase reaction vs hydrolysis, despite extensive similarity in active site architecture to hydrolytic enzymes.  相似文献   

15.
16.
Vergis JM  Beardsley GP 《Biochemistry》2004,43(5):1184-1192
The bifunctional enzyme aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is responsible for catalysis of the last two steps in the de novo purine pathway. Using recently determined crystal structures of ATIC as a guide, four candidate residues, Lys66, Tyr104, Asp125, and Lys137, were identified for site-directed mutagenesis to study the cyclohydrolase activity of this bifunctional enzyme. Steady-state kinetic experiments on these mutants have shown that none of these residues are absolutely required for catalytic activity; however, they strongly influence the efficiency of the reaction. Since the FAICAR binding site is made up mostly of backbone interactions with highly conserved residues, we postulate that these conserved interactions orient FAICAR in the active site to favor the intramolecular ring closure reaction and that this reaction may be catalyzed by an orbital steering mechanism. Furthermore, it was shown that Lys137 is responsible for the increase in cyclohydrolase activity for dimeric ATIC, which was reported previously by our laboratory. From the experiments presented here, a catalytic mechanism for the cyclohydrolase activity is postulated.  相似文献   

17.
The catalytic domain of chitobiase (beta-N-1-4 acetylhexosaminidase) from Serratia marcescens, is an alpha/beta TIM-barrel. This enzyme belongs to family 20 of glycosyl hydrolases in which a conserved amino acid pair, aspartate-glutamate, is present (Asp539-Glu540). It was proposed that catalysis by this enzyme family is carried out by glutamate 540 acting as a proton donor and by the acetamido group of the substrate as a nucleophile. We investigated the role of Asp539 and Glu540 by site-directed mutagenesis, biochemical characterization and by structural analyses of chitobiase -substrate co-crystals. We found that both residues are essential for chitobiase activity. The mutations, however, led to subtle changes in the catalytic site. Our results support the model that Glu540 acts as the proton donor and that Asp539 acts in several different ways. Asp539 restrains the acetamido group of the substrate in a specific orientation by forming a hydrogen bond with N2 of the non-reduced (-1) sugar. In addition, this residue participates in substrate binding. It is also required for the correct positioning of Glu540 and may provide additional negative charge at the active site. Thus, these biochemical and structural studies provide a molecular explanation for the functional importance and conservation of these residues.  相似文献   

18.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology and is the cellular target of camptothecin. Recent reports of enzyme structure highlight the importance of conserved amino acids N-terminal to the active site tyrosine and the involvement of Asn-726 in mediating Top1p sensitivity to camptothecin. To investigate the contribution of this residue to enzyme catalysis, we evaluated the effect of substituting His, Asp, or Ser for Asn-726 on yeast Top1p. Top1N726S and Top1N726D mutant proteins were resistant to camptothecin, although the Ser mutant was distinguished by a lack of detectable changes in activity. Thus, a basic residue immediately N-terminal to the active site tyrosine is required for camptothecin cytotoxicity. However, replacing Asn-726 with Asp or His interfered with distinct aspects of the catalytic cycle, resulting in cell lethality. In contrast to camptothecin, which inhibits enzyme-catalyzed religation of DNA, the His substituent enhanced the rate of DNA scission, whereas the Asp mutation diminished the enzyme binding of DNA. Yet, these effects on enzyme catalysis were not mutually exclusive as the His mutant was hypersensitive to camptothecin. These results suggest distinct mechanisms of poisoning DNA topoisomerase I may be explored in the development of antitumor agents capable of targeting different aspects of the Top1p catalytic cycle.  相似文献   

19.
New hyperthermostable aminopeptidase from the hyperthermophilic archaeon Pyrococcus horikoshii has acylamino acid releasing (deblocking) activity for acyl (blocked) peptides. Such an enzyme can be used for N-terminal sequencing of acyl peptides. To clarify the active site of the deblocking aminopeptidase, we prepared three mutants in which one of the three possible active site amino acid residues (Asp or Glu) was replaced with their amide derivatives. Activity and cobalt ion dependence of these mutants were examined and compared with those of the native enzyme. The results suggest that all the three possible residues (Asp173, Glu205, and Glu206) participate in the catalytic activity through binding with the cobalt ion.  相似文献   

20.
Amylosucrase is a transglycosidase which belongs to family 13 of the glycoside hydrolases and transglycosidases, and catalyses the formation of amylose from sucrose. Its potential use as an industrial tool for the synthesis or modification of polysaccharides is hampered by its low catalytic efficiency on sucrose alone, its low stability and the catalysis of side reactions resulting in sucrose isomer formation. Therefore, combinatorial engineering of the enzyme through random mutagenesis, gene shuffling and selective screening (directed evolution) was applied, in order to generate more efficient variants of the enzyme. This resulted in isolation of the most active amylosucrase (Asn387Asp) characterized to date, with a 60% increase in activity and a highly efficient polymerase (Glu227Gly) that produces a longer polymer than the wild-type enzyme. Furthermore, judged from the screening results, several variants are expected to be improved concerning activity and/or thermostability. Most of the amino acid substitutions observed in the totality of these improved variants are clustered around specific regions. The secondary sucrose-binding site and beta strand 7, connected to the important Asp393 residue, are found to be important for amylosucrase activity, whereas a specific loop in the B-domain is involved in amylosucrase specificity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号