首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-cost technologies to overcome the recalcitrance of cellulose are the key to widespread utilization of lignocellulosic biomass for ethanol production. Efficient enzymatic hydrolysis of cellulose requires the synergism of various cellulases, and the ratios of each cellulase are required to be regulated to achieve the maximum hydrolysis. On the other hand, engineering of cellulolytic Saccharomyces cerevisiae strains is a promising strategy for lignocellulosic ethanol production. The expression of cellulase-encoding genes in yeast would affect the synergism of cellulases and thus the fermentation ability of strains with exogenous enzyme addition. However, such researches are rarely reported. In this study, ten endoglucanase and β-glucosidase co-expressing S. cerevisiae strains were constructed and evaluated by enzyme assay and fermentation performance measurement. The results showed that: (1) maximum ethanol titers of recombinant strains exhibited high variability in YPSC medium (20 g/l peptone, 10 g/l yeast extract, 100 g/l acid- and alkali-pretreated corncob) within 10 days. However, they had relatively little difference in USC medium (100 g/l acid- and alkali-pretreated corncob, 0.33 g/l urea, pH 5.0). (2) Strains 17# and 19#, with ratio (CMCase to β-glucosidase) of 7.04 ± 0.61 and 7.40 ± 0.71 respectively, had the highest fermentation performance in YPSC. However, strains 11# and 3# with the highest titers in USC medium had a higher ratio of CMCase to β-glucosidase, and CMCase activities. These results indicated that nutrition, enzyme activities and the ratio of heterologous enzymes had notable influence on the fermentation ability of cellulase-expressing yeast.  相似文献   

2.

Background

The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.

Results

We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel?) to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase.

Conclusions

Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.  相似文献   

3.
木质纤维素乙醇具有替代化石燃料的潜力,其生产过程包括生物质预处理、纤维素酶生产、水解和发酵等多个步骤。将纤维素酶生产、水解和发酵组合在一起的统合生物加工过程(consolidated bioprocessing,CBP)由于能降低水解和发酵成本而具有应用于纤维素乙醇生产的潜力,该技术的关键是构建能有效降解纤维素的工程菌株,而构建表达纤维素酶的酿酒酵母即是其中一种选择。采用鸡尾酒多拷贝δ整合的策略将7种纤维素酶基因(Trichoderma reesei cbh1、cbh2和egl2,Aspergillus aculeatus cbh1、egl1和bgl1)表达盒整合至酿酒酵母W303-1A染色体上,经4轮整合筛选得到菌株LA1、LA2、LA3和LA4。对这4个菌株进行纤维素酶活性测定,结果表明从LA1到LA3各种纤维素酶活性呈递增趋势,而LA4的酶活性与LA3的酶活水平相当。对菌株LA3进行酸碱预处理玉米芯料的发酵评价,结果表明:①在外加商品化纤维素酶的情况下,与对照菌株W303-1A和AADY相比,LA3能有效利用纤维素料发酵产醇;②与分步整合的菌株W3相比,发酵性能更优;③培养基中的营养成分影响菌株发酵性能。这些结果表明,鸡尾酒δ整合是一种有效的构建酿酒酵母CBP菌株的方法。  相似文献   

4.
The corncob is an important biomass for bioalcohol production. However, there is a minor but complicated pretreatment process before it is used for bioalcohol fermentation. In this study, three genetically modified Saccharomyces cerevisiae Y33 strains containing endoglucanase (EG), cellobiohydrolase (CBH), and β-glucosidase (BG) genes were constructed. A one-step fermentation process was carried out with the recombinants using corncob as the sole carbon source. In a 3-L fermentation system, the concentration of alcohol reached 2.02 g/L and the concentration of glycerine reached 0.85 g/L after 96 h. The results prove that corncob powder can be utilized effectively by genetically modified Saccharomyces cerevisiae without any chemical pretreatment. The mixed recombinant Saccharomyces cerevisiae cells show effective synergism in the one-step fermentation system. It is feasible that corncob can be used as the sole carbon source in bioalcohol production with a one-step fermentation process.  相似文献   

5.

Background

Surfactants have attracted increasing interest for their capability to improve the enzymatic hydrolysis of lignocellulosic biomass. Compared to chemical surfactants, biosurfactants have a broader prospect for industrial applications because they are more environmentally friendly and more effective in some researches. Commercial cellulase preparations are mainly composed of endoglucanases (EGs) and cellobiohydrolases (CBHs) that possess carbohydrate-binding modules (CBMs). However, the effects of lipopeptide-type biosurfactants on enzymatic saccharification of lignocellulose and adsorption behaviors of cellulases with CBMs remain unclear.

Results

In this study, we found that Bacillus sp. W112 could produce a lipopeptide-type biosurfactant from untreated biomass, such as wheat bran and Jerusalem artichoke tuber. The lipopeptide could enhance the enzymatic hydrolysis of dilute acid pretreated Giant Juncao grass (DA-GJG) by fungal and bacterial enzymes. The enhancement increased over a range of temperatures from 30 to 50 °C. Lipopeptide was shown to be more effective in promoting DA-GJG saccharification than chemical surfactants at low dosages, with a best stimulatory degree of 20.8% at 2% loading of the substrates (w/w). Lipopeptide increased the thermostability of EG and CBH in commercial cellulase cocktails. Moreover, the dual effects of lipopeptide on the adsorption behaviors of cellulases were found. It specifically lowered the non-productive binding of cellulases to lignin and increased the binding of cellulases to cellulose. In addition, we investigated the influence of lipopeptide on the adsorption behaviors of CBHs with CBMs for the first time. Our results showed that lipopeptide reduced the adsorption of CBM-deleted CBH to DA-GJG to a greater extent than that of intact CBH while the non-productive binding of intact CBH to lignin was reduced more, indicating that lipopeptide decreased the binding of CBMs onto lignin but not their combination with cellulose.

Conclusions

In this study, we found that lipopeptide from Bacillus sp. W112 promoted the enzymatic hydrolysis of DA-GJG at relative low loadings. The stimulatory effect could be attributed to increasing the cellulase thermostability, reducing non-productive adsorption of cellulases with CBMs caused by lignin and enhancing the binding of cellulases to cellulose.
  相似文献   

6.
Enzymatic hydrolysis of cellulosic material is an essential step in the bioethanol production process. However, complete cellulose hydrolysis by cellulase is difficult due to the irreversible adsorption of cellulase onto cellulose. Thus, part of the cellulose remains in crystalline form after hydrolysis. In this study, after 96-h hydrolysis of Avicel crystalline cellulose, 47.1 % of the cellulase was adsorbed on the cellulose surface with 10.8 % crystalline cellulose remaining. In simultaneous saccharification and fermentation of 100 g/L Avicel with 1.0 filter paper unit/mL cellulase, a wild-type yeast strain produced 44.7 g/L ethanol after 96 h. The yield of ethanol was 79.7 % of the theoretical yield. On the other hand, a recombinant yeast strain displaying various cellulases, such as β-glucosidase, cellobiohydrolase, and endoglucanase, produced 48.9 g/L ethanol, which corresponds to 87.3 % of the theoretical yield. Higher ethanol production appears to be attributable to higher efficiency of cellulase displayed on the cell surface. These results suggest that cellulases displayed on the yeast cell surface improve hydrolysis of Avicel crystalline cellulose. Indeed, after the 96-h simultaneous saccharification and fermentation using the cellulase-displaying yeast, the amount of residual cellulose was 1.5 g/L, one quarter of the cellulose remaining using the wild-type strain, a result of the alleviation of irreversible adsorption of cellulases on the crystalline cellulose.  相似文献   

7.
δ-Integration can improve the expression stability and increase the copy number of exogenous genes in Saccharomyces cerevisiae. Generally, δ-integration vectors employ auxotrophic markers, such as LEU2-d, HIS3, TRP1, and URA3, to screen transformants. In this study, two cellulase genes (β-glucosidase and endoglucanase) were integrated into the S. cerevisiae W303-1A chromosome as reporters, by δ-integration with the aforementioned auxotrophic markers. Eight strains, L-BGL, H-BGL, T-BGL, U-BGL, L-EG, H-EG, T-EG, and U-EG, were selected and tested. After 5 days growth, cellulase activities (U ml?1) were 3, 2.3, 1.8, 1.5, 29, 12, 8, and 1.5, respectively. The results showed that auxotrophic markers influenced the expression of cellulase genes.  相似文献   

8.
Cotton woven fabrics which were previously dyed with a reactive dye were treated with a commercial cellulase preparation. Dyeing with a reactive dye for cotton apparently inhibited the weight loss activity and saccharification activity of cellulase. In addition, dyed cotton was treated with highly purified cellulases which were exo-type cellulases (Cellobiohydrolase I (CBH I) and Cellobiohydrolase II (CBH II)) and endo-type cellulase (Endoglucanase II (EG II)). Exo-type cellulases were inhibited more than endo-type cellulase by dyeing in the case of saccharification activity. CBH I was severely inhibited by dyeing as compared with CBH II or EG II from the viewpoint of morphological changes in the fiber surface. Dyes on the cellulose substrates severely influenced CBH I in spite of the rare modification, because CBH I hydrolyzed cellulose with true-processive action. The change in the activity of each cellulase component on dyed cotton can affect the synergistic action of cellulases.  相似文献   

9.
Production of bioethanol from brewers spent grains (BSG) using consolidated bioprocessing (CBP) is reported. Each CBP system consists of a primary filamentous fungal species, which secretes the enzymes required to deconstruct biomass, paired with a secondary yeast species to ferment liberated sugars to ethanol. Interestingly, although several pairings of fungi were investigated, the sake fermentation system (A. oryzae and S. cerevisiae NCYC479) was found to yield the highest concentrations of ethanol (37 g/L of ethanol within 10 days). On this basis, 1 t of BSG (dry weight) would yield 94 kg of ethanol using 36 hL of water in the process. QRT-PCR analysis of selected carbohydrate degrading (CAZy) genes expressed by A. oryzae in the BSG sake system showed that hemicellulose was deconstructed first, followed by cellulose. One drawback of the CBP approach is lower ethanol productivity rates; however, it requires low energy and water inputs, and hence is worthy of further investigation and optimisation.  相似文献   

10.
Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60–65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn2+, dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.  相似文献   

11.
The present paper reports in vitro strategies for assembly of minicellulosomes with two miniscaffoldins on the Saccharomyces cerevisiae cell surface. It was carried out through incubation of the yeast cells displaying scaffoldins with Escherichia coli lysates containing recombinant cellulases, or using a four-population yeast consortium. The results showed that the display level of miniscaffoldin II was distinctly increased by moving the cellulases production into E. coli or other yeast cells, indicating that the metabolic burden of the yeast host was decreased. The yeast consortium did not show any cellulolytic activity, while the E. coli lysates-treated yeast, whose anchoring miniscaffoldin length was optimized, was able to produce ~1138 mg/L ethanol from microcrystalline cellulose within 4 days. We also confirmed that the yeast-associated minicellulosome moreover showed both higher thermal stability and lower protease accessibility than free minicellulosome. This research promotes the application of S. cerevisiae as a consolidated bioprocessing (CBP) microorganism in cellulosic bioethanol production.  相似文献   

12.
Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a ''greener'' technology.  相似文献   

13.
Several fungal endophytes of the Egyptian marine sponge Latrunculia corticata were isolated, including strains Trichoderma sp. Merv6, Penicillium sp. Merv2 and Aspergillus sp. Merv70. These fungi exhibited high cellulase activity using different lignocellulosic substrates in solid state fermentations (SSF). By applying mutagenesis and intergeneric protoplast fusion, we have obtained a recombinant strain (Tahrir-25) that overproduced cellulases (exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase) that facilitated complete cellulolysis of agricultural residues. The process parameters for cellulase production by strain Tahrir-25 were optimized in SSF. The highest cellulase recovery from fermentation slurries was achieved with 0.2% Tween 80 as leaching agent. Enzyme production was optimized under the following conditions: initial moisture content of 60% (v/w), inoculum size of 106 spores ml−1, average substrate particle size of 1.0 mm, mixture of sugarcane bagasse and corncob (2:1) as the carbon source supplemented with carboxymethyl cellulose (CMC) and corn steep solids, fermentation time of 7 days, medium pH of 5.5 at 30°C. These optimized conditions yielded 450, 191, and 225 units/gram dry substrate (U gds−1) of carboxylmethyl cellulase, filter-paperase (FPase), and β-glucosidase, respectively. Subsequent fermentation by the yeast, Saccharomyces cerevisiae NRC2, using lignocellulose hydrolysates obtained from the optimized cellulase process produced the highest amount of ethanol (58 g l−1). This study has revealed the potential of exploiting marine fungi for cost-effective production of cellulases for second generation bioethanol processes.  相似文献   

14.
In the conversion of lignocellulose into high-value products, including fuels and chemicals, the production of cellulase and the enzymatic hydrolysis for producing fermentable sugar are the largest contributors to the cost of production of the final products. The marine bacterium Saccharophagus degradans 2-40T can degrade more than ten different complex polysaccharides found in the ocean, including cellulose and xylan. Accordingly, S. degradans has been actively considered as a practical source of crude enzymes needed for the saccharification of lignocellulose to produce ethanol by others including a leading commercial company. However, the overall enzyme system of S. degradans for hydrolyzing cellulose and hemicellulose has not been quantitatively evaluated yet in comparison with commercial enzymes. In this study, the inductions and activities of cellulase and xylanase of cell-free lysate of S. degradans were investigated. The growth of S. degradans cells and the activities of cellulase and xylanase were promoted by adding 2 % of cellulose and xylan mixture (cellulose:xylan = 4:3 in mass ratio) to the aquarium salt medium supplemented with 0.2 % glucose. The specific cellulase activity of the cell-free lysate of S. degradans, as determined by the filter paper activity assay, was approximately 70 times lower than those of commercial cellulases, including Celluclast 1.5 L and Accellerase 1000. These results imply that significant improvement in the cellulase activity of S. degradans is needed for the industrial uses of S. degradans as the enzyme source.  相似文献   

15.
Cellulose is the most abundant biopolymer and a major reservoir of fixed carbon on earth. Comprehension of the elusive mechanism of its enzymatic degradation represents a fundamental problem at the interface of biology, biotechnology, and materials science. The interdependence of cellulose disintegration and hydrolysis and the synergistic interplay among cellulases is yet poorly understood. Here we report evidence from in situ atomic force microscopy (AFM) that delineates degradation of a polymorphic cellulose substrate as a dynamic cycle of alternating exposure and removal of crystalline fibers. Direct observation shows that chain-end-cleaving cellobiohydrolases (CBH I, CBH II) and an internally chain-cleaving endoglucanase (EG), the major components of cellulase systems, take on distinct roles: EG and CBH II make the cellulose surface accessible for CBH I by removing amorphous-unordered substrate areas, thus exposing otherwise embedded crystalline-ordered nanofibrils of the cellulose. Subsequently, these fibrils are degraded efficiently by CBH I, thereby uncovering new amorphous areas. Without prior action of EG and CBH II, CBH I was poorly active on the cellulosic substrate. This leads to the conclusion that synergism among cellulases is morphology-dependent and governed by the cooperativity between enzymes degrading amorphous regions and those targeting primarily crystalline regions. The surface-disrupting activity of cellulases therefore strongly depends on mesoscopic structural features of the substrate: size and packing of crystalline fibers are key determinants of the overall efficiency of cellulose degradation.  相似文献   

16.
It was desired to study efficient and simplified methods to convert organosolv-pretreated horticultural waste (HW) to ethanol fuel using cellulase produced under solid-state fermentation (SSF). The unprocessed cellulase crude (72.2 %) showed better reducing sugar yield using filter paper than the commercial enzyme blend (68.7 %). Enzymatic hydrolysis of organosolv-pretreated HW using the crude cellulase with 20 % solid content, enzyme loading of 15 FPU/g HW at 50 °C, and pH 5.5 resulted in a HW hydrolysate containing 25.06 g/L glucose after 72 h. Fermentation of the hydrolysate medium produced 12.39 g/L ethanol with 0.49 g/g yield from glucose and 0.062 g/g yield from HW at 8 h using Saccharomyces cerevisiae. This study proved that crude cellulase complex produced under SSF and organosolv pretreatment can efficiently convert woody biomass to ethanol without any commercial cellulase usage.  相似文献   

17.
In this study an industrial Saccharomyces cerevisiae yeast strain capable of fermenting ethanol from pretreated lignocellulosic material was engineered. Genes encoding cellulases (endoglucanase, exoglucanase and β-glucosidase) were integrated into the chromosomal ribosomal DNA and delta regions of a derivative of the K1-V1116 wine yeast strain. The engineered cellulolytic yeast produces ethanol in one step through simultaneous saccharification and fermentation of pretreated biomass without the addition of exogenously produced enzymes. When ethanol fermentation was performed with 10% dry weight of pretreated corn stover, the recombinant strain fermented 63% of the cellulose in 96 h and the ethanol titer reached 2.6% v/v. These results demonstrate that cellulolytic S. cerevisiae strains can be used as a platform for developing an economical advanced biofuel process.  相似文献   

18.
Insects are a largely unexploited resource in prospecting for novel cellulolytic enzymes to improve the production of ethanol fuel from lignocellulosic biomass. The cost of lignocellulosic ethanol production is expected to decrease by the combination of cellulose degradation (saccharification) and fermentation of the resulting glucose to ethanol in a single process, catalyzed by the yeast Saccharomyces cerevisiae transformed to express efficient cellulases. While S. cerevisiae is an established heterologous expression system, there are no available data on the functional expression of insect cellulolytic enzymes for this species. To address this knowledge gap, S. cerevisiae was transformed to express the full‐length cDNA encoding an endoglucanase from the red flour beetle, Tribolium castaneum (TcEG1), and evaluated the activity of the transgenic product (rTcEG1). Expression of the TcEG1 cDNA in S. cerevisiae was under control of the strong glyceraldehyde‐3 phosphate dehydrogenase promoter. Cultured transformed yeast secreted rTcEG1 protein as a functional β‐1,4‐endoglucanase, which allowed transformants to survive on selective media containing cellulose as the only available carbon source. Evaluation of substrate specificity for secreted rTcEG1 demonstrated endoglucanase activity, although some activity was also detected against complex cellulose substrates. Potentially relevant to uses in biofuel production rTcEG1 activity increased with pH conditions, with the highest activity detected at pH 12. Our results demonstrate the potential for functional production of an insect cellulase in S. cerevisiae and confirm the stability of rTcEG1 activity in strong alkaline environments.  相似文献   

19.
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.  相似文献   

20.
Several yeast strains have been engineered to express different cellulases to achieve simultaneous saccharification and fermentation of lignocellulosic materials. However, successes in these endeavors were modest, as demonstrated by the relatively low ethanol titers and the limited ability of the engineered yeast strains to grow using cellulosic materials as the sole carbon source. Recently, substantial enhancements to the breakdown of cellulosic substrates have been observed when lytic polysaccharide monooxygenases (LPMOs) were added to traditional cellulase cocktails. LPMOs are reported to cleave cellulose oxidatively in the presence of enzymatic electron donors such as cellobiose dehydrogenases. In this study, we coexpressed LPMOs and cellobiose dehydrogenases with cellobiohydrolases, endoglucanases, and β-glucosidases in Saccharomyces cerevisiae. These enzymes were secreted and docked onto surface-displayed miniscaffoldins through cohesin-dockerin interaction to generate pentafunctional minicellulosomes. The enzymes on the miniscaffoldins acted synergistically to boost the degradation of phosphoric acid swollen cellulose and increased the ethanol titers from our previously achieved levels of 1.8 to 2.7 g/liter. In addition, the newly developed recombinant yeast strain was also able to grow using phosphoric acid swollen cellulose as the sole carbon source. The results demonstrate the promise of the pentafunctional minicellulosomes for consolidated bioprocessing by yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号