首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After fertilization, the dormant sperm nucleus undergoes morphological and biochemical transformations leading to the development of a functional nucleus, the male pronucleus. We have investigated the formation of the male pronucleus in a cell-free system consisting of permeabilized sea urchin sperm nuclei incubated in fertilized sea urchin egg extract containing membrane vesicles. The first sperm nuclear alteration in vitro is the disassembly of the sperm nuclear lamina as a result of lamin phosphorylation mediated by egg protein kinase C. The conical sperm nucleus decondenses into a spherical pronucleus in an ATP-dependent manner. The new nuclear envelope (NE) forms by ATP-dependent binding of vesicles to chromatin and GTP-dependent fusion of vesicles to each other. Three cytoplasmic membrane vesicle fractions with distinct biochemical, chromatin-binding and fusion properties, are required for pronuclear envelope assembly. Binding of each fraction to chromatin requires two detergent-resistant lipophilic structures at each pole of the sperm nucleus, which are incorporated into the NE by membrane fusion. Targeting of the bulk of NE vesicles to chromatin is mediated by a lamin B receptor (LBR)-like integral membrane protein. The last step of male pronuclear formation involves nuclear swelling. Nuclear swelling is associated with import of soluble lamin B into the nucleus and growth of the nuclear envelope by fusion of additional vesicles. In the nucleus, lamin B associates with LBR, which apparently tethers the NE to the lamina. Thus male pronuclear envelope assembly in vitro involves a highly ordered series of events. These events are similar to those characterizing the remodeling of somatic and embryonic nuclei transplanted into oocytes. The relationship between sperm nuclear remodeling at fertilization and nuclear remodeling after nuclear transplantation is discussed.  相似文献   

2.
Treatment of sea urchin eggs for 10 min prior to fertilization with the kinase inhibitor 6DMAP (6-dimethylaminopurine) reversibly inhibits swelling and loss of conical morphology of the male pronucleus. Male pronuclei inhibited with 1 mM 6DMAP for 25 min undergo phosphorylation of Sp H1 and Sp H2B histones as fully as do control nuclei. Therefore, Sp histone kinase, whose target sequences resemble those of the M-phase histone kinase, is not inhibited by 6DMAP, and Sp histone phosphorylation, although it may be necessary, is not sufficient for chromatin decondensation.  相似文献   

3.
Male pronucleus formation involves sperm nucleus decondensation and sperm chromatin remodeling. In sea urchins, male pronucleus decondensation was shown to be modulated by protein kinase C and a cdc2-like kinase sensitive to olomoucine in vitro assays. It was further demonstrated that olomoucine blocks SpH2B and SpH1 phosphorylation. These phosphorylations were postulated to participate in the initial steps of male chromatin remodeling during male pronucleus formation. At final steps of male chromatin remodeling, all sperm histones (SpH) disappear from male chromatin and are subsequently degraded by a cysteine protease. As a result of this remodeling, the SpH are replaced by maternal histone variants (CS). To define if sperm nucleus decondensation is coupled with sperm chromatin remodeling, we have followed the loss of SpH in zygotes treated with olomoucine. SpH degradation was followed with anti-SpH antibodies that had no cross-reactivity with CS histone variants. We found that olomoucine blocks SpH1 and SpH2B phosphorylation and inhibits male pronucleus decondensation in vivo. Interestingly, the normal schedule of SpH degradation remains unaltered in the presence of olomoucine. Taken together these results, it was concluded that male nucleus decondensation is uncoupled from the degradation of SpH associated to male chromatin remodeling. From these results, it also emerges that the phosphorylation of SpH2B and SpH1 is not required for the degradation of the SpH that is concurrent to male chromatin remodeling.  相似文献   

4.
5.
Immediately following fertilization in the sea urchin, sperm-specific histones Sp H1 and Sp H2B are phosphorylated. Then, in parallel with chromatin decondensation, nearly all phosphorylated Sp H1 is lost from the pronuclear chromatin, with the concurrent assimilation of the egg phosphoprotein CS H1. Chemical cleavage of in vivo labeled Sp H1 and Sp H2B shows that serine phosphorylation occurs in the unusually long N-terminal region of these proteins. These regions contain tandemly repeated tetra- and pentapeptide units each containing serine, proline, and two basic amino acids. It is proposed that sperm chromatin decondensation may require prior phosphorylation of these unusual N-terminal regions, whose function in the mature sperm may be to condense or stabilize its highly compact chromatin.  相似文献   

6.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin   总被引:1,自引:0,他引:1       下载免费PDF全文
Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1beta and TIF1beta from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.  相似文献   

7.
Sea urchin and sea star oocyte extracts contain proteolytic activities that are active against sperm basic nuclear proteins (SNBP). This SNBP degradation has been related to the decondensation of sperm chromatin as a possible model to male pronuclei formation. We have studied the presence of this proteolytic activity in Holothuria tubulosa (sea cucumber) and its possible relationship with sperm nuclei decondensation. The mature oocyte extracts from H. tubulosa contain a proteolytic activity to SNBP located in the macromolecular fraction of the egg‐jelly layer. SNBP degradation occurred both on sperm nuclei and on purified SNBP, histones being more easily degraded than protein Øo (sperm‐specific protein). SNBP degradation was found to be dependent on concentration, incubation time, presence of Ca2+, pH, and this activity could be a serine‐proteinase. Thermal denaturalization of the oocyte extracts (80°C, 10–15 min) inactivates its proteolytic activity on SNBP but does not affect sperm nuclei decondensation. These results would suggest that sperm nuclei decondensation occurs by a mechanism different from SNBP degradation. Thus, the sperm nuclei decondensation occurs by a thermostable factor(s) and the removal of linker SNBP (H1 and protein Øo) will be a first condition in the process of sperm chromatin remodeling.  相似文献   

8.
The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.  相似文献   

9.
When spermatozoa of Arbacia punctulata are labeled with 32P and treated with soluble egg jelly, radiolabel is incorporated into histone H3. The time course of labeling correlates with the period of chromatin decondensation of sperm pronuclei in eggs. Phosphorylation is on serine and may result from increased turnover of phosphate on H3. The macromolecular fraction of egg jelly (and not the peptide fraction) is the inducer of H3 phosphorylation. The reaction is dependent on external Ca2+ and is induced by monensin and A23187. H3 phosphorylation is not induced by the phosphodiesterase inhibitor IBMX and relatively high (250 microM) concentrations of the protein kinase inhibitor H8 are needed to block the reaction, suggesting that it is cAMP independent. A surprising finding is that merely diluting the cells into Na+ free media is the most effective method to induce the radiolabeling of H3. These results are in contrast to findings on the egg jelly induced phosphorylation of histone H1 in S. purpuratus spermatozoa. These species differences must reflect the great evolutionary divergence between these two sea urchin species in the mechanism of regulation of the phosphorylation of nuclear proteins during fertilization.  相似文献   

10.
G R Green  D L Poccia 《Biochemistry》1988,27(2):619-625
Several physical properties of sea urchin spermatid chromatin, which contains phosphorylated Sp H1 and Sp H2B histone variants, and mature sperm chromatin, in which these histones are dephosphorylated, were compared. Density, thermal stability, average nucleosomal repeat length, and resistance to micrococcal nuclease digestion are all increased in mature sperm relative to spermatid chromatin. Since the chromatins are identical in histone variant subtypes, the altered physical properties are not a consequence of changes in histone primary structure during spermiogenesis. The data are interpreted to mean that dephosphorylation of the N-terminal regions of Sp H1 and Sp H2B in late spermatid nuclei permits strong ionic binding of these highly basic regions to the extended linker, stabilizing the highly condensed structure of sperm chromatin.  相似文献   

11.
The "primitive" sea urchin Eucidaris tribuloides resembles the advanced sea urchins (euechinoids) in many respects, yet some features of its biochemistry and morphogenesis are more similar to other echinoderms such as starfish or sea cucumbers. Two unique characteristics of the sperm chromatin of all known euechinoids are an extremely long average nucleosomal repeat length and the presence of two male germ-line-specific histone variants, Sp H1 and Sp H2B. Histone composition and nucleosomal repeat length of the sperm chromatin of Eucidaris were compared to those of several euechinoids and a starfish. Eucidaris sperm chromatin contained large H1 and H2B histone variants typical of euechinoids. The H1 was about nine amino acids smaller than Sp H1 of the advanced urchin Strongylocentrotus purpuratus. Its Sp H2B molecules were the same size as in the euechinoids. Peptide maps showed that N-terminal regions of Sp H1 and Sp H2B contained repeating basic amino acid motifs characteristic of euechinoids. The smaller size of Eucidaris H1 is accounted for by a smaller C-terminal region. The repeat length of Eucidaris sperm chromatin was slightly shorter than that of two euechinoids, but significantly larger than starfish, which lacks a large H2B. The Sp H2B gene of Eucidaris was expressed during spermatogenesis in the same cell types as for S. purpuratus. Thus Sp histone subtype expression and chromatin structure in this distantly related echinoid closely resemble the euechinoids. The presence of an Sp H2B and a very long repeat length appear to be characteristic of the echinoids only.  相似文献   

12.
Nuclear envelope dynamics during male pronuclear development   总被引:1,自引:0,他引:1  
Upon fertilization, the sperm nucleus undergoes reactivation. The poreless sperm nuclear envelope is replaced by a functional male pronuclear envelope and the highly compact male chromatin decondenses. Here some recent evidence is examined: that disassembly of the sperm lamina is required for chromatin decondensation, that remnant portions of the sperm nuclear envelope target the binding of egg membrane vesicles that form the male pronuclear envelope, that functional male pronuclear envelopes containing lamin B receptor assemble prior to lamin import and lamina formation, and that lamina assembly drives male pronuclear swelling. Several unresolved issues are discussed.  相似文献   

13.
Treatment of bull spermatozoa with DDC--Na/dithiothreitol results in the swelling and decondensation of nuclear chromatin. The structures formed at the final stages of decondensation are morphologically similar to the male pronucleus. Cytophotometric analysis has shown that decondensation of chromatin in the gametes in followed by quantitative changes of basic nuclear proteins. In partly--decondensed sperm nuclei the intensity of histone staining increases as a result of the appearance of extra reactive groups. In fully decondensed nuclei there remain only 54% of histones of the original haploid level. Nucleoproteins revealed in the sperm with fully dispersed chromatin must be histones of the somatic type.  相似文献   

14.
Two species of histones in sea urchin sperm (Sp H1 and Sp H2B) are chimeric molecules whose highly basic amino-terminal domains are dephosphorylated at the last stage of sperm cell differentiation, and rephosphorylated immediately following fertilization. The phosphorylated regions consist largely of repeating tetrapeptides with two basic residues flanking Ser-Pro residues ('SPKK' motifs) and are predicted to have beta-turn secondary structures. Alteration of the charge and structure of the SPKK sites may play a role in the unusually dense DNA packaging of the mature sperm chromatin. The motif resembles the target site of cell-cycle-associated cdc2 kinases and is found in several other proteins whose nucleic acid affinities may be altered during the cell cycle.  相似文献   

15.
A cell-free preparation obtained from extracts of activated Xenopus laevis eggs induced chromatin decondensation and nuclear formation from demembranated Xenopus sperm nuclei.Electron microscopy revealed that the reassembled nucleus had a double-layered nuclear memblane,nuclear pore complexes,and decondensed chromatin etc.Indirect immunofluorescence analysis demonstrated the presence of lamina in newly assembled nuclei.Western-blotting results showed that lamin LII was present in egg extracts and in lamina of the reassembled nuclei which were previously reported to contain only egg derived lamin LIII.  相似文献   

16.
Studies on histone phosphorylation during transitions in chromatin structure occurringin vivoduring spermatogenesis and early embryogenesis in sea urchins are reviewed and evaluated in the light of recent studies on histone phosphorylation occurring during chromatin synthesis in frog egg extractsin vitroand evidence that protein kinases and phosphatases play direct roles in the regulation of cellular structure. Sperm-specific histone variants Sp H1 and Sp H2B are maintained as phosphorylated derivatives N and O/P throughout spermatogenesis and early embryogenesis and egg specific histone variants CS H1 and CS H2A are phosphorylated during early embryogenesis. These developmental correlations provide clues about the roles of histone phosphorylation in control of chromatin structurein vivoand provide a basis for the interpretation of data obtained from in-vitro sperm chromatin remodeling in egg extracts and from biochemical studies on the effects of histone phosphorylation on DNA binding. The potential consequences for chromatin structure of the various histone phosphorylation events observed in sea urchins and frog egg extracts are discussed.  相似文献   

17.
Reactivation of chicken erythrocyte nuclei for DNA replication in Xenopus egg extracts involves two phases of chromatin remodelling: a fast decondensation leading to a small volume increase and chromatin dispersion occurring within a few minutes (termed stage I decondensation), followed by a slower membrane-dependent decondensation and enlargement of up to 40-fold from the initial volume (stage II decondensation). Chromatin decondensation as measured by nuclear swelling and micrococcal nuclease digestion required ATP. We observed a characteristic change in the phosphorylation pattern of erythrocyte proteins upon incubation in egg extract. While histones H5, H2A, and H4 became selectively phosphorylated during decondensation, the phosphorylation of histone H3 and of several nonhistone proteins was prevented. Furthermore, histone H5 was selectively released from erythrocyte nuclei in an energy-dependent reaction. These molecular changes already occurred during stage I decondensation and they persisted during stage II decondensation. DNA replication was confined to nuclei of stage II decondensation which incorporated lamin LIII from the egg extract. These results show that initiation of DNA replication in chicken erythrocytes requires in addition to ATP-dependent chromatin remodelling (stage I), further changes in chromatin structure that correlates with lamin LIII incorporation, and stage II decondensation.  相似文献   

18.
A maternal store of histones in unfertilized sea urchin eggs is demonstrated by two independent criteria. Stored histones are identified by their ability to assemble into chromatin of male pronuclei of fertilized sea urchin eggs in the absence of protein synthesis, suggesting a minimum of at least 25 haploid equivalents for each histone present and functional in the unfertilized egg. In addition, electrophoretic analysis of proteins from acid extracts of unfertilized whole eggs and enucleated merogons reveals protein spots comigrating with cleavage stage histone standards, though not with other histone variants found in later sea urchin development or in sperm. Quantification of the amount of protein per histone spot yields an estimate of several hundred haploid DNA equivalents per egg of stored histone. The identity of some of the putative histones was verified by a highly sensitive immunological technique, involving electrophoretic transfer of proteins from the two-dimensional polyacrylamide gels to nitrocellulose filters. Proteins in amounts less than 2 x 10(-4) micrograms can be detected by this method.  相似文献   

19.
Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin   总被引:25,自引:0,他引:25  
A Philpott  G H Leno  R A Laskey 《Cell》1991,65(4):569-578
At fertilization, sperm chromatin decondenses in two stages, which can be mimicked in extracts of Xenopus eggs. Rapid, limited decondensation is followed by slower, membrane-dependent decondensation and swelling. Nucleoplasmin, an acidic nuclear protein, occurs at high concentration in Xenopus eggs and has a histone-binding role in nucleosome assembly. Immunodepleting nucleoplasmin from egg extracts inhibits the initial rapid stage of sperm decondensation, and also the decondensation of myeloma nuclei, relative to controls of mock depletion and TFIIIA depletion. Readdition of purified nucleoplasmin recues depleted extracts. A physiological concentration of purified nucleoplasmin alone decondenses both sperm and myeloma nuclei. We conclude that nucleoplasmin is both necessary and sufficient for the first stage of sperm decondensation in Xenopus eggs.  相似文献   

20.
In amphibians, sperm histone transition post‐fertilization during male pronucleus formation is commanded by histone chaperone Nucleoplasmin (NPM). Here, we report the first studies to analyze the participation of a Nucleoplasmin‐like protein on male chromatin remodeling in sea urchins. In this report, we present the molecular characterization of a nucleoplasmin‐like protein that is present in non fertilized eggs and early zygotes in sea urchin specie Tetrapygus niger. This protein, named MP62 can interact with sperm histones in vitro. By male chromatin decondensation assays and immunodepletion experiments in vitro, we have demonstrated that this protein is responsible for sperm nucleosome disorganization. Furthermore, as amphibian nucleoplasmin MP62 is phosphorylated in vivo immediately post‐fertilization and this phosphorylation is dependent on CDK‐cyclin activities found after fertilization. As we shown, olomoucine and roscovitine inhibits male nucleosome decondensation, sperm histone replacement in vitro and MP62 phosphorylation in vivo. This is the first report of a nucleoplasmin‐like activity in sea urchins participating during male pronucleus formation post‐fecundation. J. Cell. Biochem. 114: 1779–1788, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号