首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Frank Meadows 《CMAJ》1992,146(6):1057
  相似文献   

3.
4.
The importance of actin organization in controlling the chondrocyte phenotype is well established, but little is known about the cytoskeletal components regulating chondrocyte differentiation. Previously, we have observed up-regulation of an actin-binding gelsolin-like protein in hypertrophic chondrocytes. We have now identified it as adseverin (scinderin). Adseverin is drastically up-regulated during chondrocyte maturation, as shown by Northern blot analysis, in situ hybridization, and real-time RT-PCR. Its expression is positively regulated by PKC and MEK signaling as shown by inhibitory analyses. Over-expression of adseverin in non-hypertrophic chondrocytes causes rearrangement of the actin cytoskeleton, a change in cell morphology, a dramatic (3.5-fold) increase in cell volume, and up-regulation of Indian hedgehog (Ihh) and of collagen type X--all indicative of chondrocyte differentiation. These changes are mediated by ERK1/2 and p38 kinase pathways. Thus, adseverin-induced rearrangements of the actin cytoskeleton may mediate the PKC-dependent activation of p38 and Erk1/2 signaling pathways necessary for chondrocyte hypertrophy, as evidenced by changes in cell morphology, increase in cell size and expression of the chondrocyte maturation markers. These results demonstrate that interdependence of cytoskeletal organization and chondrogenic gene expression is regulated, at least in part, by actin-binding proteins such as adseverin.  相似文献   

5.
Notch signaling in the nervous system. Pieces still missing from the puzzle   总被引:10,自引:0,他引:10  
Notch has been known for many years as a receptor for inhibitory signals that shapes the pattern of the nervous system during its development. Genes in the Notch pathway function to prevent neural determination so that only a subset of the available ectodermal cells become neural precursors. The localization of Notch signaling is crucial for determining where neural precursor cells arise on a cell-by-cell basis. The unresolved problem is that studies of the expression of Notch protein and its ligands are inconsistent with the pattern of neurogenesis. During neural cell fate specification, distributions of Notch protein and of its ligand Delta appear uniform. Under the reigning paradigm, such widespread expression should lead to N signal transduction in all cells and thereby prevent any neural specification. Yet, contrary to this expectation, neural elements still form, in characteristic patterns, hence, Notch signal transduction must have been inactive in the precursor cells. The mechanism preventing Notch signaling in certain cells must be posttranslational but it has not yet been identified. This review will outline the experimental evidence supporting this view of Notch signaling, and briefly evaluate some of the possible mechanisms that have been suggested.  相似文献   

6.
7.
8.
9.
The jigsaw puzzle model postulates that the predominant factor relating primary sequence to three-dimensional fold lies in the stereospecific packing of interdigitating side-chains within densely packed protein interiors. An attempt has been made to check the validity of the model by means of a surface complementarity function. Out of a database of 100 highly resolved protein structures the contacts between buried hydrophobic residues (Leu, Ile, Val, Phe) and their neighbours have been categorized in terms of the extent of side-chain surface area involved in a contact (overlap) and their steric fit (Sm). The results show that the majority of contacts between a buried residue and its immediate neighbours (side-chains) are of high steric fit and in the case of extended overlap at least one of the angular parameters characterizing interresidue geometry to have pronounced deviation from a random distribution, estimated by chi(2). The calculations thus tend to support the "jigsaw puzzle" model in that 75-85% of the contacts involving hydrophobic residues are of high surface complementarity, which, coupled to high overlap, exercise fairly stringent constraints over the possible geometrical orientations between interacting residues. These constraints manifest in simple patterns in the distributions of orientational angles. Approximately 60-80% of the buried side-chain surface packs against neighbouring side-chains, the rest interacting with main-chain atoms. The latter partition of the surface maintains an equally high steric fit (relative to side-chain contacts) emphasizing a non-trivial though secondary role played by main-chain atoms in interior packing. The majority of this class of contacts, though of high complementarity, is of reduced overlap. All residues whether hydrophobic or polar/charged show similar surface complementarity measures upon burial, indicating comparable competence of all amino acids in packing effectively with their atomic environments. The specificity thus appears to be distributed over the entire network of contacts within proteins. The study concludes with a proposal to classify contacts as specific and non-specific (based on overlap and fit), with the former perhaps contributing more to the specificity between sequence and fold than the latter.  相似文献   

10.
Volpi S  Bongiorni S  Prantera G 《Chromosoma》2007,116(3):249-258
In Drosophila melanogaster, the two chromosomal proteins HP1 and HP2 colocalize on heterochromatic and euchromatic sites in polytene chromosomes. Mutations in the HP2 gene act as dominant suppressors of position effect variegation, demonstrating a role for HP2 in the formation or maintenance of heterochromatin. In this paper, we investigated whether a putative homolog of the D. melanogaster HP2 is involved in the facultative heterochromatinization process in mealybugs. Using an antibody raised against the Drosophila HP2, we identified in the mealybug Planococcus citri a cross-reactive epitope, which we refer to as HP2-like. We investigated the HP2-like pattern during the male embryo development where the entire paternal haploid chromosome set becomes heterochromatic. The HP2 antibody heavily decorates the chromocenters, where it localizes with HP1, and marks the chromatin before it acquires the full cytological characteristics of the male-specific heterochromatin. In euchromatic chromosomes, HP2-like is mainly concentrated at telomeric sites. The interplay between HP2-like and HP1-like was studied by dsRNA interference experiments. Extinguishing HP1-like expression by RNAi does not prevent the association of HP2-like with facultative heterochromatin, implying that HP2-like binds to chromatin in a HP1-independent manner. Our results confirm and extend the structural and functional conservation of proteins involved in heterochromatin assembly. Silvia Volpi and Silvia Bongiorni contributed equally to the work.  相似文献   

11.
12.
Solving the shugoshin puzzle   总被引:1,自引:0,他引:1  
Shugoshin proteins form a complex with protein phosphatase 2A (PP2A) that protects centromeric cohesin from separase-mediated cleavage during yeast meiosis I. Recent work shows that this mechanism is conserved from yeast to mammals. Importantly, a model emerges that explains a long-standing puzzle, namely why the shugoshin-PP2A complex mediates protection of centromeric cohesin from separase cleavage specifically during meiosis I, but not during meiosis II or mitosis.  相似文献   

13.
14.
Research regarding the basic mechanisms of the epilepsies has been limited and has generated few clues that have led to dramatic improvements in the surgical therapy of epilepsy. It is now known that the epileptic focus is characterized by a population of pacemaker neurons that fire autonomously in bursts. When this high frequency discharge recruits bursting activity in neighboring neurons, a propagating seizure occurs. Such data as well as other recent data in neurobiology indicate that new forms of surgical therapy may be forthcoming including brain transplantation as well as local application of transmitter compounds which may significantly improve the therapy of epilepsy.  相似文献   

15.
16.
17.
18.
Tight junctions restrict the flow of ions and aqueous molecules between cells by forming a selective barrier to the paracellular pathway. Permeability of the tight junction barrier is determined by a class of transmembrane proteins known as claudins. The relationship between claudins and paracellular permeability is complex and determined not only by the profile of claudin expression but also by the arrangement of claudins and other proteins into tight junction strands. This review summarizes progress in understanding how claudins are assembled into tight junctions and how they interact with other tight junction proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号