首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

2.
Using the cultured Chinese hamster cell line Don, G1 or S or a mixture of late-S/G2 cells were prepared by release from metaphase arrest. Metaphase (M) cells were also obtained by mitotic arrest of log-phase cultures with Colcemid and held in metaphase; such M cells remained untreated with any other compound and were termed standard M cells. When interphase (I) cells were fused at pH 8.0 and 37 degrees C with standard cells in the presence of Colcemid by means of UV-inactivated Sendai virus, binucleate interphase-metaphase (I-M) cells were obtained. In a given I-M cell there occurred within 30 min after fusion either prophasing of the I nucleus or formation of a nuclear envelope (NE) around the chromosomes. About 20% of early G1 cells, 35% of cells at the G1/S boundary, 50% of S cells, and 70% of late S/G2 cells could induce NE formation. If, before fusion, cycloheximide (CHE), an inhibitor of protein synthesis, was present during release from M arrest, the cells entered G1 but not S. About 20% of such early G1 cells, like the untreated early G1 cells, had the capacity to induce NE formation during subsequent fusion. If the cells were blocked in S with 5 mM thymidine (TdR), At least 80% of these cells could induce NE formation during subsequent fusion, but in the presence of both TdR and CHE only 35% could do so. It appeared, therefore, that protein synthesis in interphase was required for NE formation. Experiments with actinomycin D indicated that RNA synthesis was also necessary for acquisition of NE-inducing capacity. About 35% of G1 cells from confluent monolayers had the NE-inducing capacity, but prolonged exposure to CHE reduced their number to 8% . Removal of CHE restored the ability while the cells still remained in G1. This result indicated that continuing protein synthesis in the G1 cell was needed for NE formation subsequent to fusion. The fact that macromolecular synthesis must occur in the I cell before fusion if NE formation was to occur in the fused I-M cell lends further support to evidence adduced earlier that this phenomenon is a normal mitotic event. Prophasing of the I nucleus in I-M cells did not appear to be dependent on macromolecular synthesis in the I cell; earlier results from this laboratory showed, however, that protein synthesis in the prior G2 period of the M cell of the I-M pair was required for prophasing.  相似文献   

3.
Fusing human HeLa metaphase cells with HeLa interphase cells resulted within 30 min in either of two phenomena in the resultant binucleate cell: either prophasing of the interphase nucleus or formation of a normal-appearing nuclear envelope around the metaphase chromosomes. The frequency of either occurrence was strongly dependent on environmental pH. At pH's of 6.6–8.0, prophasing predominated; at pH 8.5 nuclear envelope formation predominated. Additionally, the frequencies of the two events in multinucleate cells depended on the metaphase/interphase ratio. When the ratio was 0.33 nuclear envelope formation predominated; when it was 2.0 prophasing predominated. In their general features, the results with fused HeLa cells resembled those reported earlier with fused Chinese hamster Don cells. However, the results provided an indication that between pH 6.6 and 8.0 the HeLa metaphase cells possessed a much greater capacity than the Don metaphase cells to induce prophasing. Fusion of Don metaphase cells with HeLa interphase cells or of Don interphase cells with HeLa metaphase cells at pH 8.0 resulted in nuclear envelope formation or prophasing in each kind of heterokaryon. As in the homokaryons, the frequencies of the two events in the heterokaryons depended on the metaphase/interphase ratio. The statistics of prophasing and nuclear envelope formation in the homo- and heterokaryon populations were consistent with the notion that disruption or formation of the nuclear envelope depends on the balance attained between disruptive and formative processes.  相似文献   

4.
Summary Premature chromosome condensation (PCC) was induced by electrofusion of metaphase cells of an Ehrlich ascites tumor cell line with interphase cells of a Muntjac cell line or of a Chinese Hamster subline. Electrofusion was performed by cell alignment in a weakly inhomogeneous a.c. field of 200 V/cm amplitude (peak-to-peak value) and of 1.7 MHz frequency, followed by the application of a series of breakdown (fusion) pulses of 5 kV/cm strength and 15 µs duration. Most of the PCC's were of the G2 type despite the large proportion of G1 and S cells in the suspension. The number of chromatid aberrations observed in electrofused cells which had not been subjected to irradiation was not significantly above the spontaneous level. This indicates that electrofusion, at least as used here, did not lead to lesions expressed as structural aberrations. When interphase cells were irradiated by X-ray doses below 3 Gy before electrofusion PCC analysis showed chromosome damage consisting mainly of breaks and gaps. The frequency of aberrations recorded by PCC was 6 to 40 fold larger than that seen in conventional metaphase analysis. This large increase probably arose because of an effective suppression of the G2 repair of chromosomal lesions by the fast condensation process which took place within about 30 min. This assumption was supported by PCC experiments in which the time between X-irradiation and fusion with subsequent chromosome condensation was varied. The results demonstrated that G2 repair of chromosomal lesions was not detectable until 20 min after fusion with a half-time of the repair kinetics of about 1.5 h. The selectivity of premature chromosome condensation in G2 cells is discussed in terms of the differences between electrofusion and chemically or virally induced fusion. It is assumed that the concentration and the transfer rate of the chromosome condensation factor from the metaphase to the interphase cell are the limiting factors in achieving PCC. This is because the localised permeabilisation of the membrane and the dominance of two-cell fusions are characteristic of electrofusion.  相似文献   

5.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

6.
INDUCTION OF PROPHASE IN INTERPHASE NUCLEI BY FUSION WITH METAPHASE CELLS   总被引:2,自引:7,他引:2  
Fusion of an interphase cell with a metaphase cell results in profound changes in the interphase chromatin that have been called "chromosome pulverization" or "premature chromosome condensation" In addition to the usual light microscopy, the nature of the changes has been investigated in the present study with electron microscopy and biochemical techniques Metaphase and interphase cells were mixed and fused at 37°C by means of ultraviolet-inactivated Sendai virus. After cell fusion, morphological changes in interphase nuclei occurred only in binucleate cells which contained one intact set of metaphase chromosomes Irrespective of the nuclear stage at the time of cell fusion, the morphologic changes that occurred 5–20 min later simulated very closely a sequence of events that characterizes the normal G2-prophase transition. Radioautography revealed that, late in the process, substantial amounts of RNA and probably protein were transferred from the interphase nucleus into the cytoplasm of fused cells. Thus, the findings indicate the existence in metaphase cells of factor(s) which are capable of initiating biochemical and morphological events in interphase nuclei intrinsic to the normal mitotic process.  相似文献   

7.
In Chinese hamster Don cells, fusion of an interphase cell with a metaphase cell resulted either in prophasing of the interphase nucleus, including loss of the nuclear envelope (NE), or in the formation of a double membrane around the metaphase chromosomes. Only one of these phenomena occurred in a given interphase-metaphase (I–M) binucleate cell. At pH 7.4, there was about an equal probability that either event could occur amongst the population of I–M cells. The effect of pH changes in the medium containing the fused cells was examined. At pH 6.6, prophasing was the predominant event; at pH 8.0, membrane formation predominated. It was found that the rate of progression of a mononucleate cell from G2 to metaphase was appreciably faster at pH 6.6 than at pH 8.0. Conversely, the progression from metaphase to G1 was faster at pH 8.0 than at pH 6.6. These results with the mononucleate cells strengthen the hypothesis that structural changes in I–M cells are reflections of normal mitotic phenomena. Additional evidence for this hypothesis was produced by electron microscope examination after direct fixation in chrom-osmium. The double membrane around the chromosomes of the I–M cell was indistinguishable from the normal NE. The results obtained by varying the pH of the medium containing the fused cells provide an indication that disruption or formation of the NE of Don cells depends on the balance reached between disruptive and formative processes.  相似文献   

8.
A new method is described to visualize chromosome damage in interphase cells immediately after exposure to mutagenic agents. This method involves the fusion of treated interphase cells with untreated mitotic cells which results in the induction of premature chromosome condensation (PCC). Chinese hamster ovary (CHO) cells were treated with X-rays and chromosome aberrations were scored in G2-PCC and the mitotic chromosomes. The incidence of aberrations was significantly higher in PCC than that observed in the mitotic chromosomes of the treated cells. Post-irradiation incubation for I h before fusion allowed the repair of some of the chromosome damage. Data are also presented which indicate that the extent of radiation damage visualized in PCC is inversely proportional to the degree of chromosome condensation. These results indicate that the PCC method has a greater senstivity in the detection of induced chromosome damage than the standard method of scoring metaphase chromosomes.  相似文献   

9.
Summary Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7–9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed.  相似文献   

10.
We describe a human autoantiserum that recognizes specific determinants present both on the nuclear envelope of interphase cells and the periphery of metaphase chromosomes. These determinants are highly conserved through evolution and present on a protein with an apparent molecular weight of 33,000. This 33 kd protein, which we call "perichromin," appears to be directly or indirectly bound to both interphase and metaphase DNA. Studies of the transformation of perichromin from a nuclear envelope association to a perichromosomal position during prophase suggests a pathway for chromosome organization throughout the cell cycle.  相似文献   

11.
Summary Conventional and molecular cytogenetic analyses of three murine cancer cell lines that had been induced in male athymic mice by the injection of three different human prostate cancer cell lines revealed selective amplification of the Y chromosome. In particular, analysis of metaphase and interphase nuclei by fluorescence in situ hybridization (FISH) with the mouse Y chromosome-specific DNA painting probe revealed the presence of various numbers of Y chromosomes, ranging from one to eight, with a large majority of nuclei showing two copies (46.5–60.1%). In Interphase nuclei, the Y chromosomes showed distinct morphology, allowing identification irrespective of whether the preparations were treated for 15 min or for 5 h with Colcemid, a chemical known to cause chromosome condensation. However, FISH performed on human lymphocyte cultures with chromosome-specific DNA painting probes other than the Y chromosome did not reveal condensed chromosome morphology in interphase nuclei even after 12 h of Colcemid treatment. Our FISH results indicate that (1) the Y chromosome is selectively amplified in all three cell lines; (2) the mouse Y chromosome number is comparable in both interphase and metaphase cells; (3) the Y chromosome number varies between one and eight, with a large majority of cells showing two or three copies in most interphase nuclei; (4) the condensation of the Y chromosome is not affected by the duration of Colcemid treatment but by its inherent DNA constitution; and (5) the number of copies of the Y chromosome is increased and retained not only in human prostate tumor cell lines but also in murine tumors induced by these prostate tumor cell lines.  相似文献   

12.
V I Stobetski? 《Tsitologiia》1991,33(3):116-118
After administration of colcemid and 5-BrdU in the cell culture, the cells pass through the first interphase to delay in mitosis. Then the cells overcome the colcemid blockade, and polykaryocytes with micronuclei are formed. The second interphase in followed by the second mitosis, during which dicentric chromosomes are observed. These dicentrics are the result of telomeric chromosome fusion. The action of hyperthermia (40 degrees C) during the whole period of colcemid and 5-BrdU treatment or that of the hyperthermia (40 degrees C) only during the first 17 hours (the first interphase and the first mitosis) lead to the increased frequency of dicentrics. Under condition of hypothermia (34 degrees C) the frequency of dicentric formation decreases. Changes in cultivation temperature during the latest 25 hr of colcemid and 5-BrdU action (the second interphase and the second mitosis) exert no influence on the dicentric formation frequency. Because there are no dicentrics in cells during the metaphase of the first mitosis, it is supposed that the temperature--sensitive period may be the latest steps of colcemid blockade, i.e. the period of formation of micronuclei.  相似文献   

13.
用C-带和涂染技术检测棕色田鼠Y染色体   总被引:1,自引:0,他引:1  
采用染色体C 带技术和小鼠整条Y染色体特异探针检测棕色田鼠的Y染色体 ,结果如下 :棕色田鼠雄性个体C 带中期分裂相中 ,X性染色体是亚中部着丝粒染色体 ,在着丝粒处存在着强烈的C阳性带 ,而且在短臂的中间也有一条C阳性带 ,但是没有发现深染的Y染色体。用小鼠整条Y染色体特异探针涂染棕色田鼠的骨髓细胞中期分裂相和间期核 ,以小鼠骨髓细胞中期分裂相和间期核作为对照。涂染结果表明 :棕色田鼠骨髓细胞中期分裂相和间期核涂染信号检出率分别为 0 - 2 %和 3% - 5 % ,两者均呈阴性反应 ,而对照都呈阳性反应。根据实验结果 ,作者认为在棕色田鼠的Y染色体上及整个基因组DNA中不存在小鼠整条Y染色体特异DNA的同源序列 ,其Y染色体上可能没有决定雄性性别的重要基因  相似文献   

14.
We have developed a simplified approach for the isolation of metaphase chromosomes from HeLa cells. In this method, all the chromosomes from a cell remain together in a bundle which we call a metaphase chromosome cluster. Cells are arrested to 90–95% in metaphase, collected by centrifugation, extracted with non-ionic detergent in a low ionic strength buffer at neutral pH, and homogenised to strip away the cytoskeleton. The chromosome clusters which are released can then be isolated in a crude state by pelleting or they can be purified away from nearly all the interphase nuclei and cytoplasmic debris by banding in a PercollTM density gradient. — This procedure has the advantages that it is quick and easy, metaphase chromatin is recovered in high yield, and Ca++ is not needed to stabilise the chromosomes. Although the method does not yield individual chromosomes, it is nevertheless very useful for both structural and biochemical studies of mitotic chromatin. The chromosome clusters also make possible biochemical and structural studies of what holds the different chromosomes together. Such information could be useful in improving chromosome isolation procedures and for understanding suprachromosomal organisation of the nucleus.  相似文献   

15.
The premature chromosome condensation (PCC) technique was used to study several factors that determine the yield of chromosome fragments as observed in interphase cells after irradiation. In addition to absorbed dose and the extent of chromosome condensation at the time of irradiation, changes in chromosome conformation as cells progressed through the cell cycle after irradiation affected dramatically the yield of chromosome fragments observed. As a test of the effect of chromosome decondensation, irradiated metaphase Chinese hamster ovary (CHO) cells were allowed to divide, and the prematurely condensed chromosomes in the daughter cells were analyzed in their G1 phase. The yield of chromosome fragments increased as the daughter cells progressed toward S phase and chromosome decondensation occurred. When early G1 CHO cells were irradiated and analyzed at later times in G1 phase, an increase in chromosome fragmentation again followed the gradual increase in chromosome decondensation. As a test of the effect of chromosome condensation, G0 human lymphocytes were irradiated and analyzed at various times after fusion with mitotic CHO cells, i.e., as condensation proceeded. The yield of fragments observed was directly related to the amount of chromosome condensation allowed to take place after irradiation and inversely related to the extent of chromosome condensation at the time of irradiation. It can be concluded that changes in chromosome conformation interfered with rejoining processes. In contrast, resting chromosomes (as in G0 lymphocytes irradiated before fusion) showed efficient rejoining. These results support the hypothesis that cytogenetic lesions become observable chromosome breaks when chromosome condensation or decondensation occurs during the cell cycle.  相似文献   

16.
The process of cellular fusion induced by Sendai virus in Chinese hamster cells (Don line) afforded us the opportunity to study nuclear envelope formation around metaphase sets in the presence of interphase nuclei, when chromosome pulverization failed to occur in such multinucleate cells. Morphologically, the enveloped metaphase chromosomes resembled a normal telophase nucleus, though minor differences prompted us to call it telophase-like. Electron microscopic observations demonstrated that the membranes enveloping the chromosomes appeared to be identical with a normal nuclear envelope. The longer the cells were incubated with Colcemid before fusion, the higher was the number of cells with telophase-like nuclei and the lower the percentage of cells with pulverizations. Furthermore, the number of pulverizations bore a somewhat direct relationship to the ratio of metaphase to interphase nuclei in multinucleate cells, and the number of telophase-like nuclei was inversely proportional to this ratio. A hypothesis is advanced in which a balance between the activities of a chromosome pulverization factor and a nuclear envelope formation factor, the former in metaphase cells and the latter in interphase cells, is decisive as to the nature of morphologic events observed in virus-induced fused cells.  相似文献   

17.
The rate of structural chromosome mutations at metaphase of the first mitosis was determined in culture of embrionic mouse fibroblasts after UV-irradiation during the S-period (lambda = 265 nm at an incident dose of 40 erg/mm2). It is established that the mutation rate is higher at late metaphase than at early metaphase. After the cell treatment with intercalating compounds (actinomycin D, acridine orange or ethidium bromide) at metaphase, the rate of UV-induced chromosome aberrations was decreased (about 2-fold). It is concluded from the results obtained that the majority of aberrations arise during metaphase after UV-irradiation in the process of DNA synthesis. After the cell treatment with o-methylhydroxylamine (OMHA) during the S-period the rate of structural mutations was the same at late and early metaphases. This rate was not affected by the caffeine treatment at metaphase; during this stage the acentric chromosome fragments lie outside the equatorial plate, which is an indication that the OMHA-induced aberrations, in contrast to the UV-induced aberrations, are formed before the beginning of metaphase, possibly during the interphase. It is suggested that the chromosome condensation during metaphase is of importance in the formation of structural mutations.  相似文献   

18.
Kathleen Church 《Chromosoma》1979,71(3):359-370
The X chromosome can be identified with the light microscope throughout all stages of the gonial cell cycle (including interphase) in the grasshopper Brachystola magna. At gonial mitotic stages the X chromosome gives the appearance of being undercondensed or negatively heteropycnotic. At interphase the X projects out from the body of the nucleus. — Examination with the electron microscope reveals that the X is compartmentalized at least two gonial cell cycles prior to the entry of the cells into meiotic prophase. The membrane layers that envelope the X chromatin at interphase remain associated with the X chromosome throughout gonial mitotic stages providing the ultrastructural basis for the apparent negative heteropycnosis observed with the light microscope. — The X chromosome is inactive in RNA synthesis during gonial mitotic stages but is hyperactive in RNA synthesis when compared to autosomes at gonial interphase. — X chromosome condensation which reaches its maximum at premieotic interphase is initiated at or prior to the pre-pentultimate gonial division.  相似文献   

19.
The cytoplasmic factor responsible for chromosome condensation was introduced into mouse zygotes at different times after fertilization by fusion of the zygotes with metaphase I oocytes. In 72% of heterokaryons obtained after fusion of early zygotes (14-18 hr post-human chorionic gonadotrophin (HCG) with oocytes, the male and female pronuclei of the zygote decondensed. At the same time, the oocyte chromosomes became enclosed in a nuclear envelope and decondensed to an interphase state. However, in the rest of the heterokaryons, the chromatin of the pronuclei condensed to metaphase chromosomes, thus resulting in three sets of chromosomes. Fusion of zygotes that had begun DNA synthesis (20-22 hr post-HCG) with oocytes induced chromosome condensation of the pronuclei in 76% of the cases. In some heterokaryons, however, the oocyte chromosome decondensed to an interphase state similar to the zygote pronuclei. Fusion between late zygotes (27-29 hr post-HCG) with oocytes resulted in chromosome condensation of the pronuclei in all heterokaryons. On the basis of these results, the formation of the pronuclei and their progression toward mitosis in the zygote may be explained by changing levels of a metaphase factor in the cell, or by a balance between interphase and metaphase factors.  相似文献   

20.
Chromatin folding in the interphase nucleus is not known. We compared the pattern of chromatin condensation in Indian muntjac, Chinese hamster ovary, murine pre B, and K562 human erythroleukemia cells during the cell cycle. Fluorescent microscopy showed that chromosome condensation follows a general pathway. Synchronized cells were reversibly permeabilized and used to isolate interphase chromatin structures. Based on their structures two major categories of intermediates were distinguished: (1) decondensed chromatin and (2) condensed chromosomal forms. (1) Chromatin forms were found between the G1 and mid-S phase involving veil-like, supercoiled, fibrous, ribboned structures; (2) condensing chromosomal forms appeared in the late-S, G2, and M phase, including strings, chromatin bodies, elongated pre-chromosomes, pre-condensed chromosomes, and metaphase chromosomes. Results demonstrate that interphase chromosomes are clustered in domains; condensing interphase chromosomes are linearly arranged. Our results raise questions related to telomer sequences and to the chemical nature of chromosome connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号