首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duckweed (Lemnaceae) mats in Texas and Florida were investigated, using the acetylene reduction assay, to determine whether nitrogen fixation occurred in these floating aquatic macrophyte communities. N(2)-fixing microorganisms were enumerated by plating or most-probable-number techniques, using appropriate N-free media. Results of the investigations indicated that substantial N(2)-fixation (C(2)H(2)) was associated with duckweed mats in Texas and Florida. Acetylene reduction values ranged from 1 to 18 mumol of C(2)H(4) g (dry weight) day for samples incubated aerobically in light. Dark N(2) fixation was always two- to fivefold lower. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (7 to 10 muM) reduced acetylene reduction to levels intermediate between light and dark incubation. Acetylene reduction was generally greatest for samples incubated anaerobically in the light. It was estimated that 15 to 20% of the N requirement of the duckweed could be supplied through biological nitrogen fixation. N(2)-fixing heterotrophic bacteria (10 cells g [wet weight] and cyanobacteria (10 propagules g [wet weight] were associated with the duckweed mats. Azotobacter sp. was not detected in these investigations. One diazotrophic isolate was classified as Klebsiella.  相似文献   

2.
Until recently, diazotrophy was known in only one of the 30 formally described species of Burkholderia. Novel N(2)-fixing plant-associated Burkholderia species such as B. unamae, B. tropica, and B. xenovorans have been described, but their environmental distribution is scarcely known. In the present study, the occurrence of N(2)-fixing Burkholderia species associated with different varieties of sugarcane and maize growing in regions of Mexico and Brazil was analyzed. Only 111 out of more than 900 isolates recovered had N(2)-fixing ability as demonstrated by the acetylene reduction assay. All 111 isolates also yielded a PCR product with primers targeting the nifH gene, which encodes a key enzyme in the process of nitrogen fixation. These 111 isolates were confirmed as belonging to the genus Burkholderia by using a new 16S rRNA-specific primer pair for diazotrophic species (except B. vietnamiensis) and closely related nondiazotrophic Burkholderia. In Mexico, many isolates of B. unamae (predominantly associated with sugarcane) and B. tropica (more often associated with maize) were recovered. However, in Brazil B. tropica was not identified among the isolates analyzed, and only a few B. unamae isolates were recovered from one sugarcane variety. Most Brazilian diazotrophic Burkholderia isolates (associated with both sugarcane and maize plants) belonged to a novel species, as revealed by amplified 16S rRNA gene restriction profiles, 16S rRNA gene sequencing, and protein electrophoresis. In addition, transmissibility factors such as the cblA and esmR genes, identified among clinical and environmental isolates of opportunistic pathogens of B. cenocepacia and other species of the B. cepacia complex, were not detected in any of the plant-associated diazotrophic Burkholderia isolates analyzed.  相似文献   

3.
HetR, a serine type protease, plays an important role in heterocyst differentiation in filamentous cyanobacteria. We isolated and sequenced the hetR genes from different heterocystous and filamentous nonheterocystous cyanobacteria. The hetR gene in the heterocyst forming Anabaena variabilis ATCC 29413 FD was interrupted by interposon mutagenesis (mutant strain WSIII8). This mutant does not form heterocysts and shows no diazotrophic growth under aerobic conditions. However, under anaerobic N(2)-fixing conditions, the WSIII8 cells are able to grow, and high nitrogenase (Nif2) activity is detectable. Nif2 expression was demonstrated in each vegetative cell of the filament by immunolocalization 4 h after nitrogen step-down.  相似文献   

4.
The novel thermophilic CO- and H(2)-oxidizing bacterium UBT1 has been isolated from the covering soil of a burning charcoal pile. The isolate is gram positive and obligately chemolithoautotrophic and has been named Streptomyces thermoautotrophicus on the basis of G+C content (70.6 +/- 0.19 mol%), a phospholipid pattern of type II, MK-9(H(4)) as the major quinone, and other chemotaxonomic and morphological properties. S. thermoautotrophicus could grow with CO (t(d) = 8 h), H(2) plus CO(2) (t(d) = 6 h), car exhaust, or gas produced by the incomplete combustion of wood. Complex media or heterotrophic substrates such as sugars, organic acids, amino acids, and alcohols did not support growth. Molybdenum was required for CO-autotrophic growth. For growth with H(2), nickel was not necessary. The optimum growth temperature was 65 degrees C; no growth was observed below 40 degrees C. However, CO-grown cells were able to oxidize CO at temperatures of 10 to 70 degrees C. Temperature profiles of burning charcoal piles revealed that, up to a depth of about 10 to 25 cm, the entire covering soil provides a suitable habitat for S. thermoautotrophicus. The K(m) was 88 mul of CO liter and V(max) was 20.2 mul of CO h mg of protein. The threshold value of S. thermoautotrophicus of 0.2 mul of CO liter was similar to those of various soils. The specific CO-oxidizing activity in extracts with phenazinemethosulfate plus 2,6-dichlorophenolindophenol as electron acceptors was 246 mumol min mg of protein. In exception to other carboxydotrophic bacteria, S. thermoautotrophicus CO dehydrogenase was able to reduce low potential electron acceptors such as methyl and benzyl viologens.  相似文献   

5.
Agrobacterium tumefaciens Is a Diazotrophic Bacterium   总被引:1,自引:0,他引:1       下载免费PDF全文
This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grow on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15N supplied as 15N2. As with most other well-characterized diazotrophic bacteria, the presence of NH4+ in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.  相似文献   

6.
We report the isolation of a cukaryotic green alga ( Chlorella , strain WPI-2) which accumulates large stores of nitrogen (N) during growth in N-free medium and seems to incorporate14N2, yet does not reduce acetylene to ethylene. Total N accumulation during growth on N-free medium and in gases free of combined N was measured by three methods: Kjeldahl, oxidative pyrolysis via chemiluminescence (Antek N analyzer), and Dumas (Coleman N analyzer). Increases in N ranging from 22–64%± 1% were observed. Isotope dilution studies using cells labelled with 15NO 3- and then shifted to 14N2 in N-free medium showed dilution of the 15N isotope by 14N from 5.67 to 5.32%± 0.05%. Using a variety of conditions, we were unable to demonstrate the reduction of acctylene to ethylene by WPI-2, although diazotrophic cyanobacteria gave positive results. Although the data on WPI-2 are not conclusive in establishing this alga as a diazotroph, the data do suggest that within the Chlorophyceae there may exist a novel form of nitrogen gas metabolism.  相似文献   

7.
Detached warty lenticellate bark of a mangrove tree species, Bruguiera gymnorrhiza (L.) Lamk. from Iriomote Island, Okinawa, a subtropical region of Japan, showed development of acetylene reduction activity when incubated in a mineral nutrient solution lacking nitrogen under an atmosphere consisting of 5% O(2), 90% N(2), and 5% C(2)H(2). The bacteria responsible for nitrogen fixation were isolated from the bark, and their capacity for acetylene reduction and the incorporation of N(2) into the bacterial cells was confirmed. Four representative strains of the isolates were subjected to taxonomic classification. Two strains were similar to Enterobacter cloacae, and another resembled Enterobacter aerogenes. The characteristics of the fourth strain were similar to those of Klebsiella planticola (Bagley et al., Curr. Microbiol. 6:105-109, 1981). The results of this investigation suggest that the acetylene reduction activity of lenticellate warts of mangrove trunk bark is due to the presence in the warts of nitrogen-fixing bacteria belonging to the family Enterobacteriaceae.  相似文献   

8.
The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N(2)-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N(2)-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75(T). These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75(T). Although the ability to fix N(2) is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N(2)-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N(2)-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N(2)-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments.  相似文献   

9.
Detached cowpea nodules that contained a nitrous oxide reductase-positive (Nor) rhizobium strain (8A55) and a nitrous oxide reductase-negative (Nor) rhizobium strain (32H1) were incubated with 1% N(2)O (95 atom% N) in the following three atmospheres: (i) aerobic with C(2)H(2) (10%), (ii) aerobic without C(2)H(2), and (iii) anaerobic (argon atmosphere) without C(2)H(2). The greatest production of N(2) occurred anaerobically with 8A55, yet very little was formed with 32H1. Although acetylene reduction activity was slightly higher with 32H1, about 10 times more N(2) was produced aerobically by 8A55 than by 32H1 in the absence of acetylene. The major reductive pathway of N(2)O reduction by denitrifying rhizobium strain 8A55 is by nitrous oxide reductase rather than nitrogenase.  相似文献   

10.
It has previously been reported that endophytic diazotrophic bacteria contribute significantly to the nitrogen budgets of some graminaceous species. In this study the contribution of biological nitrogen fixation to the N-budget of a South African sugarcane cultivar was evaluated using 15N natural abundance, acetylene reduction and 15N incorporation. Plants were also screened for the presence of endophytic diazotrophic bacteria using acetylene reduction and nifH-gene targeted PCR with the pure bacterial strains. 15N natural abundance studies on field-grown sugarcane indicated that the plants did not rely extensively on biological nitrogen fixation. Furthermore, no evidence was found for significant N2-fixation or nitrogenase activity in field-grown or glasshouse-grown plants using 15N incorporation measurements and acetylene reduction assays. Seven endophytic bacterial strains were isolated from glasshouse-grown and field-grown plants and cultured on N-free medium. The diazotrophic character of these seven strains could not be confirmed using acetylene reduction and PCR screening for nifH. Thus, although biological nitrogen fixation may occur in South African sugarcane varieties, the contribution of this N-source in the tested cultivar was not significant.  相似文献   

11.
Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops.  相似文献   

12.
Methylammonium/ammonium ion, glutamine, glutamate, arginine and proline uptake, and their assimilation as nitrogen sources, was studied in Nostoc muscorum and its glutamine synthetase-deficient mutant. Glutamine served as nitrogen source independent of glutamine synthetase activity. Glutamate was not metabolised as a nitrogen source but still inhibited nitrogenase activity and diazotrophic growth. Glutamine synthetase activity was essential for the assimilation of N2, ammonia, arginine and proline as nitrogen sources but not for the control of their transport, heterocyst formation, and production of ammonia or aminoacid dependent repressor signal for N2-fixing heterocysts. These results also suggest that glutamine synthetase serves as the sole route of ammonia assimilation and glutamine synthesis, and ammonia per se as the repressor signal for N2-fixing heterocysts and methylammonium (ammonium) transport.  相似文献   

13.
Sandh G  Ran L  Xu L  Sundqvist G  Bulone V  Bergman B 《Proteomics》2011,11(3):406-419
Trichodesmium is a marine filamentous diazotrophic cyanobacterium and an important contributor of "new" nitrogen in the oligotrophic surface waters of the tropical and sub-tropical oceans. It is unique in that it exclusively fixes N(2) at daytime, although it belongs to the non-heterocystous filamentous segment of the cyanobacterial radiation. Here we present the first quantitative proteomic analysis of Trichodesmium erythraeum IMS101 when grown under different nitrogen regimes using 2-DE/MALDI-TOF-MS. Addition of combined nitrogen (NO3-) prevented development of the morphological characteristics of the N(2)-fixing cell type (diazocytes), inhibited expression of the nitrogenase enzyme subunits and consequently N(2) fixation activity. The diazotrophic regime (N(2) versus NO3- cultures) elicited the differential expression of more than 100 proteins, which represented 13.5% of the separated proteins. Besides proteins directly related to N(2) fixation, proteins involved in the synthesis of reducing equivalents and the generation of a micro-oxic environment were strongly up-regulated, as was in particular Dps, a protein related to iron acquisition and potentially other vital cellular processes. In contrast, proteins involved in the S-adenosylmethionine (SAM) cycle, synthesis of amino acids and production of carbon skeletons for storage and synthesis of amino acids were suppressed. The data are discussed in the context of Trichodesmium's unusual N(2)-fixing physiology.  相似文献   

14.
Unlike wild type, certain Mo-dependent nitrogenases, which are expressed in non-N2-fixing mutant strains of Azotobacter vinelandii and have single amino acid substitutions within a region of the MoFe protein alpha-subunit proposed to encompass an FeMo cofactor-binding domain, are able to catalyze the reduction of acetylene by both two and four electrons to yield ethylene and ethane, respectively (Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E., and Dean, D. R. (1990) Nature 343, 188-190). Although the V-dependent nitrogenase is also able to catalyze the reduction of acetylene to the same two- and four-electron products (Dilworth, M. J., Eady, R. R., Robson, R. L., and Miller, R. W. (1987) Nature 327, 167-168), we find that ethane formation from acetylene catalyzed by the altered Mo-dependent nitrogenases occurs by a different mechanism, which is distinguished by: (i) an increased sensitivity to CO; (ii) the absence of a lag; and (iii) no temperature dependence of product distribution among ethylene and ethane during acetylene reduction. An altered MoFe protein, which was purified from one such mutant strain having the alpha-subunit glutaminyl 191 residue substituted by lysyl, exhibited both a changed S = 3/2 EPR spectrum and changes in the distribution of electrons to various products when compared to wild type. Also, unlike wild type, this altered MoFe protein catalyzed proton reduction that is inhibited by carbon monoxide (CO). Because proton reduction catalyzed by a nitrogenase that has a FeMo cofactor with citrate rather than homocitrate as its organic constituent (Liang, J., Madden, M., Shah, V. K., and Burris, R. H. (1990) Biochemistry 29, 8577-8581) is also inhibited by CO, the possibility arose that changes in the polypeptide environment of FeMo cofactor might have caused a rearrangement in its molecular structure or composition. However, this possibility was ruled out by biochemical reconstitution studies (using FeMo cofactor isolated from both the wild-type and altered MoFe proteins), which were monitored by EPR spectroscopy and resulting catalytic activity.  相似文献   

15.
H2 uptake and H2-supported O2 uptake were measured in N2-fixing cultures of Frankia strain ArI3 isolated from root nodules of Alnus rubra. H2 uptake by intact cells was O2 dependent and maximum rates were observed at ambient O2 concentrations. No hydrogenase activity could be detected in NH4+-grown, undifferentiated filaments cultured aerobically indicating that uptake hydrogenase activity was associated with the vesicles, the cellular site of nitrogen fixation in Frankia. Hydrogenase activity was inhibited by acetylene but inhibition could be alleviated by pretreatment with H2. H2 stimulated acetylene reduction at supraoptimal but not suboptimal O2 concentrations. These results suggest that uptake hydrogenase activity in ArI3 may play a role in O2 protection of nitrogenase, especially under conditions of carbon limitation.  相似文献   

16.
Six unicellular diazotrophic cyanobacteria were isolated from the coast around Singapore. The isolates grew under both light:dark (L:D) cycles and continuous illumination (CL) in media without combined nitrogen and exhibited an ability to fix nitrogen (as measured by acetylene reduction) under aerobic conditions. The cells of all isolates were surrounded by a thick fibrous outer wall layer, and they divided by transverse binary fission. The arrangement of photosynthetic thylakoids was of the dispersed type. Three isolates were identified as form‐genus Gloeothece as cells were divided in a single plane, and the other three isolates were identified as form‐genus Gloeocapsa as cells were divided in multiple planes. Phylogenetic analyses based on the DNA sequences of the genes encoding 16S rRNA and dinitrogenase reductase (nifH) revealed the following: (i) Our six isolates formed a monophyletic cluster. (ii) The monophyletic cluster was subdivided into two phylogenetic groups, which taxonomically corresponded with the form‐genera Gloeothece and Gloeocapsa. However, (iii) a diazotrophic strain of form‐genus Gloeothece, Gloeothece membranacea (Rabenh.) Bornet PCC6501, was not closely related to our isolates, and (iv) some, but not all, diazotrophic unicellular strains of form‐genus Cyanothece were observed to be in a close relationship with our isolates.  相似文献   

17.
The effects of the intracellular energy balance and adenylate pool composition on N2 fixation were examined by determining changes in the energy charge (EC) and the ADP/ATP (D/T) ratio of cells in chemostat and batch cultures of Clostridium pasteurianum, Klebsiella pneumoniae, and Azotobacter vinelandii. When cells of C. pasteurianum, K. pneumoniae, and A. vinelandii in sucrose-limited chemostats were examined, in all cases the EC increased greater than or equal to 15% when the nitrogen source was switched from N2 to NH3 and decreased greater than or equal to 15% when the nitrogen source was switched from NH3 to N2. The D/T ratio of the same cultures decreased greater than or equal to 70% when they were switched from N2 to NH3. In such cultures the adenylate pools remained constant when the cells were grown on either NH3 or N2. In nitrogen (NH3)-limited cultures, the adenylate pool was two- to threefold higher than the adenylate pool in sucrose-limited cultures, and the nitrogenase content of such cells was two- to threefold greater than the nitrogenase content of sucrose-limited N2-fixing cells. The EC and D/T ratio of cells from batch cultures of C. pasteurianum growing on NH3 in the presence of N2 were 0.82 and 0.83, respectively, but when the NH3 was consumed and the cells were switched to a nitrogen-fixing metabolism, the EC and D/T ratio changed to 0.70 and 0.90, respectively. Conversely, when NH3 was added to N2-fixing cultures the EC and D/T ratio changed within 1.5 h the EC and D/T ratio of NH3-grown cells. The nitrogen content of N2-fixing cells to which NH3 was added decreased at a rate greater could be accounted for by cell growth in the absence of further synthesis. This decay of nitrogenase activity (with a half-life about 1.2 to 1.4 h) suggests that some type of inactivation of nitrogenase occurs during repression. The nitrogenase of whole cells was estimated to be operating at about 32% of its theoretical maximum activity during steady-state N2-fixing conditions. Similarities in the data from chemostat and batch cultures of both aerobic and anaerobic N2-fixing organisms suggest that low EC and high D/T ratio are normal manifestations of an N2-fixing physiology.  相似文献   

18.
Capone DG  Budin JM 《Plant physiology》1982,70(6):1601-1604
Nitrogen fixation was associated with the rinsed roots and rhizomes of the seagrass, Zostera marina L. Nitrogenase activity (acetylene reduction) was greater on rhizomes compared to roots, and on older roots and rhizomes relative to younger tissue. Compared to aerobic assays, anaerobic or microaerobic conditions enhanced the rate of acetylene reduction by rhizomes with attached roots, with the highest activity (100 nanomoles per gram dry weight per hour) occurring at pO2 = 0.01 atmosphere. Addition of glucose, sucrose, or succinate also increased the rate of acetylene reduction under anaerobic conditions, with glucose providing the most stimulation. In one experiment, comparison of acetylene reduction assays with 15N2 incorporation yielded a ratio of about 2.6:1. Seagrass communities are thought to be limited by the availability of nitrogen and, therefore, nitrogenase activity directly associated with their roots and rhizomes suggests the possibility of a N2-fixing flora which may subsidize their nutritional demand for nitrogen.  相似文献   

19.
Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium   总被引:6,自引:0,他引:6  
Production of H2 by Azospirillum brasilense under N2-fixing conditions was studied in continuous and batch cultures. Net H2 production was consistently observed only when the gas phase contained CO. Nitrogenase activity (C2H2 reduction) and H2 evolution (in the presence of 5% CO) showed a similar response to O2 and were highest at 0.75% dissolved O2. Uptake hydrogenase activity, ranging from 0.3 to 2.5 mumol H2/mg protein per hour was observed in batch cultures under N2. Such rates were more than sufficient to recycle nitrogenase-produced H2. Tritium-exchange assay showed that H2 uptake was higher under Ar than under N2. Uptake hydrogenase was strongly inhibited by CO and C2H2. Cyclic GMP inhibited both nitrogenase and uptake hydrogenase activities.  相似文献   

20.
Nitrogenase Activity and Photosynthesis in Plectonema boryanum   总被引:3,自引:1,他引:2       下载免费PDF全文
Nitrogen-starved Plectonema boryanum 594 cultures flushed with N(2)/CO(2) or A/CO(2) (99.7%/0.3%, vol/vol) exhibited nitrogenase activity when assayed either by acetylene reduction or hydrogen evolution. Oxygen evolution activities and phycocyanin pigments decreased sharply before and during the development of nitrogenase activity, but recovered in the N(2)/CO(2) cultures after a period of active nitrogen fixation. Under high illumination, the onset of nitrogenase activity was delayed; however, the presence of 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) eliminated this lag. Oxygen was a strong and irreversible inhibitor of nitrogenase activity at low (>0.5%) concentrations. In the dark, low oxygen tensions (0.5%) stimulated nitrogenase activity (up to 60% of that in the light), suggesting a limited but significant respiratory protection of nitrogenase at low oxygen tensions. DCMU was not a strong inhibitor of nitrogenase activity. A decrease in nitrogenase activity after a period of active nitrogen fixation was observed in the N(2)/CO(2-), but not in the A/CO(2-), flushed cultures. We suggest that this decrease in nitrogenase activity is due to exhaustion of stored substrate reserves as well as inhibition by the renewed oxygen evolution of the cultures. Repeated peaks of alternating nitrogenase activity and oxygen evolution were observed in some experiments. Our results indicate a temporal separation of these basically incompatible reactions in P. boryanum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号