首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on sequence homology with a previously cloned human GlcNAc 6-O-sulfotransferase, we have identified an open reading frame (ORF) encoding a novel member of the Gal/GalNAc/GlcNAc 6-O-sulfotransferase (GST) family termed GST-5 on the human X chromosome (band Xp11). GST-5 has recently been characterized as a novel GalNAc 6-O-sulfotransferase termed chondroitin 6-sulfotransferase-2 (Kitagawa, H., Fujita, M., Itio, N., and Sugahara K. (2000) J. Biol. Chem. 275, 21075-21080). We have coexpressed a human GST-5 cDNA with a GlyCAM-1/IgG fusion protein in COS-7 cells and observed four-fold enhanced [(35)S]sulfate incorporation into this mucin acceptor. All mucin-associated [(35)S]sulfate was incorporated as GlcNAc-6-sulfate or Galbeta1-->4GlcNAc-6-sulfate. GST-5 was also expressed in soluble epitope-tagged form and found to catalyze 6-O-sulfation of GlcNAc residues in synthetic acceptor structures. In particular, GST-5 was found to catalyze 6-O-sulfation of beta-benzyl GlcNAc but not alpha- or beta-benzyl GalNAc. In the mouse genome we have found a homologous ORF that predicts a novel murine GlcNAc 6-O-sulfotransferase with 88% identity to the human enzyme. This gene was mapped to mouse chromosome X at band XA3.1-3.2. GST-5 is the newest member of an emerging family of carbohydrate 6-O-sulfotransferases that includes chondroitin 6-sulfotransferase (GST-0), keratan-sulfate galactose 6-O-sulfotransferase (GST-1), the ubiquitously expressed GlcNAc 6-O-sulfotransferase (GST-2), high endothelial cell GlcNAc 6-O-sulfotransferase (GST-3), and intestinal GlcNAc 6-O-sulfotransferase (GST-4).  相似文献   

2.
We have identified a novel galactose 3-O-sulfotransferase, termed Gal3ST-4, by analysis of an expression sequence tag using the amino acid sequence of human cerebroside 3'-sulfotransferase (Gal3ST-1). The isolated cDNA contains a single open reading frame coding for a protein of 486 amino acids with a type II transmembrane topology. The amino acid sequence of Gal3ST-4 revealed 33%, 39%, and 30% identity to human Gal3ST-1, Gal beta 1-->3/4GlcNAc:-->3'-sulfotransferase (Gal3ST-2) and Gal beta 1-->4GlcNAc:-->3'-sulfotransferase (Gal3ST-3), respectively. The Gal3ST-4 gene comprised at least four exons and was located on human chromosome 7q22. Expression of Gal3ST-4 in COS-7 cells produced a sulfotransferase activity that catalyzes the transfer of [(35)S]sulfate to the C-3' position of Gal beta 1-->3GalNAc alpha 1-O-Bn. Gal3ST-4 recognizes Gal beta 1-->3GalNAc and Gal beta 1-->3(GlcNAc beta 1-->6)GalNAc as good substrates, but not Gal beta 1-->3GalNAc(OH) or Gal beta 1-->3/4GlcNAc. Asialofetuin is also a good substrate, and the sulfation was found exclusively in O-linked glycans that consist of the Gal beta 1-->3GalNAc moiety, suggesting that the enzyme is specific for O-linked glycans. Northern blot analysis revealed that 2.5-kilobase mRNA for the enzyme is expressed extensively in various tissues. These results suggest that Gal3ST-4 is the fourth member of a Gal:-->3-sulfotransferase family and that the four members, Gal3ST-1, Gal3ST-2, Gal3ST-3, and Gal3ST-4, are responsible for sulfation of different acceptor substrates.  相似文献   

3.
The HNK-1 glycan, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->R, is highly expressed in neuronal cells and apparently plays critical roles in neuronal cell migration and axonal extension. The HNK-1 glycan synthesis is initiated by the addition of beta1,3-linked GlcA to N-acetyllactosamine followed by sulfation of the C-3 position of GlcA. The cDNAs encoding beta1,3-glucuronyltransferase (GlcAT-P) and HNK-1 sulfotransferase (HNK-1ST) have been recently cloned. Among various adhesion molecules, the neural cell adhesion molecule (NCAM) was shown to contain HNK-1 glycan on N-glycans. In the present study, we first demonstrated that NCAM also bears HNK-1 glycan attached to O-glycans when NCAM contains the O-glycan attachment scaffold, muscle-specific domain, and is synthesized in the presence of core 2 beta1,6-N-acetylglucosaminyltransferase, GlcAT-P, and HNK-1ST. Structural analysis of the HNK-1 glycan revealed that the HNK-1 glycan is attached on core 2 branched O-glycans, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->3)GalNAc. Using synthetic oligosaccharides as acceptors, we found that GlcAT-P and HNK-1ST almost equally act on oligosaccharides, mimicking N- and O-glycans. By contrast, HNK-1 glycan was much more efficiently added to N-glycans than O-glycans when NCAM was used as an acceptor. These results are consistent with our results showing that HNK-1 glycan is minimally attached to O-glycans of NCAM in fetal brain, heart, and the myoblast cell line, C2C12. These results combined together indicate that HNK-1 glycan can be synthesized on core 2 branched O-glycans but that the HNK-1 glycan is preferentially added on N-glycans over O-glycans of NCAM, probably because N-glycans are extended further than O-glycans attached to NCAM containing the muscle-specific domain.  相似文献   

4.
5.
On a way of structural analysis of total N-glycans linked to glycoproteins in royal jelly (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000), Kimura, M. et al., Biosci. Biotechnol. Biochem., 66, 1985-1989 (2002)), we found that some complex type N-glycans containing a beta1-3galactose residue occur on the insect glycoproteins. Up to date, it has been considered that naturally occurring insect glycoproteins do not bear the galactose-containing N-glycans, therefore, in this report we describe the structural analysis of the complex type N-glycans of royal jelly glycoproteins.By a combination of endo- and exo-glycosidase digestions, IS-MS analysis, and 1H-NMR spectroscopy, the structures of the beta1-3 galactose-containing N-glycan were identified as the following; GlcNAcbeta1-2Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, Manalpha1-3Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, and Manalpha1-6(Manalpha1-3)Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this is the first report showing that the Galbeta1-3GlcNAcbeta1-4Man unit occurs in N-glycans of insect glycoproteins, indicating a beta1-3 galactosyl transferase and beta1-4GlcNAc transferase (GNT-IV) are expressed in the honeybee cells.  相似文献   

6.
Sulfated glycoconjugates regulate biological processes such as cell adhesion and cancer metastasis. We examined the acceptor specificities and kinetic properties of three cloned Gal:3-O-sulfotransferases (Gal3STs) ST-2, ST-3, and ST-4 along with a purified Gal3ST from colon carcinoma LS180 cells. Gal3ST-2 was the dominant Gal3ST in LS180. While the mucin core-2 structure Galbeta1,4GlcNAcbeta1,6(3-O-MeGalbeta1,3)GalNAcalpha-O-Bn (where Bn is benzyl) and the disaccharide Galbeta1,4GlcNAc served as high affinity acceptors for Gal3ST-2 and Gal3ST-3, 3-O-MeGalbeta1,4GlcNAcbeta1,-6(Galbeta1,3)GalNAcalpha-O-Bn and Galbeta1,3GalNAcalpha-O-Al (where Al is allyl) were efficient acceptors for Gal3ST-4. The activities of Gal3ST-2 and Gal3ST-3 could be distinguished with the Globo H precursor (Galbeta1,3GalNAcbeta1,3Galalpha-O-Me) and fetuin triantennary asialoglycopeptide. Gal3ST-2 acted efficiently on the former, while Gal3ST-3 showed preference for the latter. Gal3ST-4 also acted on the Globo H precursor but not the glycopeptide. In support of the specificity, Gal3ST-2 activity toward the Galbeta1,4GlcNAcbeta unit on mucin core-2 as well as the Globo H precursor could be inhibited competitively by Galbeta1,4GlcNAcbeta1,6(3-O-sulfoGalbeta1,3)GalNAcalpha-O-Bn but not 3-O-sulfoGalbeta1,-4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-Bn. Remarkably these sulfotransferases were uniquely specific for sulfated substrates: Gal3ST-3 utilized Galbeta1,4(6-O-sulfo)-GlcNAcbeta-O-Al as acceptor, Gal3ST-2 acted efficiently on Galbeta1,3(6-O-sulfo)GlcNAcbeta-O-Al, and Gal3ST-4 acted efficiently on Galbeta1,3(6-O-sulfo)GalNAcalpha-O-Al. Mg(2+), Mn(2+), and Ca(2+) stimulated the activities of Gal3ST-2, whereas only Mg(2+) augmented Gal3ST-3 activity. Divalent cations did not stimulate Gal3ST-4, although inhibition was noted at high Mn(2+) concentrations. The fine substrate specificities of Gal3STs indicate a distinct physiological role for each enzyme.  相似文献   

7.
I-branched poly-N-acetyllactosamine is a unique carbohydrate composed of N-acetyllactosamine branches attached to linear poly-N-acetyllactosamine, which is synthesized by I-branching beta1, 6-N-acetylglucosaminyltransferase. I-branched poly-N-acetyllactosamine can carry bivalent functional oligosaccharides such as sialyl Lewisx, which provide much better carbohydrate ligands than monovalent functional oligosaccharides. In the present study, we first demonstrate that I-branching beta1, 6-N-acetylglucosaminyltransferase cloned from human PA-1 embryonic carcinoma cells transfers beta1,6-linked GlcNAc preferentially to galactosyl residues of N-acetyllactosamine close to nonreducing terminals. We then demonstrate that among various beta1, 4-galactosyltransferases (beta4Gal-Ts), beta4Gal-TI is most efficient in adding a galactose to linear and branched poly-N-acetyllactosamines. When a beta1,6-GlcNAc branched poly-N-acetyllactosamine was incubated with a mixture of beta4Gal-TI and i-extension beta1,3-N-acetylglucosaminyltransferase, the major product was the oligosaccharide with one N-acetyllactosamine extension on the linear Galbeta1-->4GlcNAcbeta1-->3 side chain. Only a minor product contained galactosylated I-branch without N-acetyllactosamine extension. This finding was explained by the fact that beta4Gal-TI adds a galactose poorly to beta1,6-GlcNAc attached to linear poly-N-acetyllactosamines, while beta1, 3-N-acetylglucosaminyltransferase and beta4Gal-TI efficiently add N-acetyllactosamine to linear poly-N-acetyllactosamines. Together, these results strongly suggest that galactosylation of I-branch is a rate-limiting step in I-branched poly-N-acetyllactosamine synthesis, allowing poly-N-acetyllactosamine extension mostly along the linear poly-N-acetyllactosamine side chain. These findings are entirely consistent with previous findings that poly-N-acetyllactosamines in human erythrocytes, PA-1 embryonic carcinoma cells, and rabbit erythrocytes contain multiple, short I-branches.  相似文献   

8.
9.
N-Acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) catalyzes the transfer of sulfate from adenosine 3'-phosphate,5'-phosphosulfate to the C-6 position of the non-reducing GlcNAc. Three human GlcNAc6STs, namely GlcNAc6ST-1, GlcNAc6ST-2 (HEC-GlcNAc6ST), and GlcNAc6ST-3 (I-GlcNAc6ST), were produced as fusion proteins to protein A, and their substrate specificities as well as their enzymological properties were determined. Both GlcNAc6ST-1 and GlcNAc6ST-2 efficiently utilized the following oligosaccharide structures as acceptors: GlcNAcbeta1-6[Galbeta1-3]GalNAc-pNP (core 2), GlcNAcbeta1-6ManOMe, and GlcNAcbeta1-2Man. The ratios of activities to these substrates were not significantly different between the two enzymes. However, GlcNAc6ST-2 but not GlcNAc6ST-1 acted on core 3 of GlcNAcbeta1-3GalNAc-pNP. GlcNAc6ST-3 used only the core 2 structure among the above mentioned oligosaccharide structures. The ability of GlcNAc6ST-1 to sulfate core 2 structure as efficiently as GlcNAc6ST-2 is consistent with the view that GlcNAc6ST-1 is also involved in the synthesis of l-selectin ligand. Indeed, cells doubly transfected with GlcNAc6ST-1 and fucosyltransferase VII cDNAs supported the rolling of L-selectin-expressing cells. The activity of GlcNAc6ST-2 on core 3 and its expression in mucinous adenocarcinoma suggested that this enzyme corresponds to the sulfotransferase, which is specifically expressed in mucinous adenocarcinoma (Seko, A., Sumiya, J., Yonezawa, S., Nagata, K., and Yamashita, K. (2000) Glycobiology 10, 919-929).  相似文献   

10.
In calf thymus an alpha-D-galactosyltransferase activity has been detected that transfers galactosyl residues from UDP-galactose to suitable acceptors having galactose at the non-reducing terminus. For example, incubation of UDP-[14C]galactose and Gal beta(1 leads to 4) GlcNAc (N-acetyllactosamine) in the presence of a calf thymus cell-free suspension containing this galactosyltransferase activity resulted in the enzymic synthesis of a 14C-labelled trisaccharide. 500-MHz 1H-NMR spectroscopic analysis revealed the structure of the trisaccharide to be: Gal alpha (1 leads to 3) Gal beta (1 leads to 4) GlcNAc. This study illustrates the suitability of the 1H-NMR method for the analysis of enzymic conversions of carbohydrate chains.  相似文献   

11.
Calf thyroid microsomes were found to contain an enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phospho[35S]sulfate (PAPS) to C-3 of terminal galactose residues in beta 1----4 linkage to GlcNAc. This sulfotransferase is believed to be involved in the biosynthesis of the recently described Gal(3-SO4) capping groups present in the N-linked oligosaccharides of thyroglobulin (Spiro, R.G., and Bhoyroo, V. D. (1988) J. Biol. Chem. 263, 14351-14358). Assays with various native and modified glycopeptides indicated that the enzyme acted optimally on complex-type carbohydrate units in which beta-linked Gal has been uncovered by desulfation or brought into a terminal position by removal of sialyl and/or alpha-galactosyl residues. With fetuin asialoglycopeptides as acceptors (Km = 0.1 mM) the transfer of sulfate from PAPS (Km = 6.3 microM) had a pH optimum of approximately 7.0, required Mn2+ ions (10-50 mM) and was markedly stimulated by Triton X-100 (0.1%) and ATP (2 mM). The same enzyme apparently sulfated free N-acetyllactosamine (LacNAc; Km = 0.69 mM) and its ethyl glycoside, indicating that it had no absolute requirement for a peptide recognition site. Studies with a number of disaccharides related to LacNAc provided information relating to the specifying role of the beta 1----4 galactosyl linkage and the configuration at C-2 of the sugar to which it is attached. Hydrazine-nitrous acid-NaBH4 treatment of the 35S-labeled products from sulfotransferase action on asialoglycopeptides as well as on the ethyl glycoside of LacNAc yielded the same disaccharide, Gal(3-SO4) beta 1----4 anhydromannitol, as is obtained from a similar treatment of thyroglobulin. Subcellular distribution studies indicated that the PAPS:galactose 3-O-sulfotransferase is located in the Golgi compartment which is consistent with the late occurrence of the requisite beta-galactosylation step. It is proposed that in certain tissues the ultimate nature of the capping groups attached to glycoproteins containing terminal Gal beta 1----4GlcNAc sequences could be the result of a competition between this 3-O-sulfotransferase and sialyl- and/or alpha-galactosyltransferases.  相似文献   

12.
Poly-N-acetyllactosamine is a unique carbohydrate that can carry various functional oligosaccharides, such as sialyl Lewis X. It has been shown that the amount of poly-N-acetyllactosamine is increased in N-glycans, when they contain Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->4GlcNAcbeta1 -->2)Manalpha1-->6 branched structure. To determine how this increased synthesis of poly-N-acetyllactosamines takes place, the branched acceptor was incubated with a mixture of i-extension enzyme (iGnT) and beta1, 4galactosyltransferase I (beta4Gal-TI). First, N-acetyllactosamine repeats were more readily added to the branched acceptor than the summation of poly-N-acetyllactosamines formed individually on each unbranched acceptor. Surprisingly, poly-N-acetyllactosamine was more efficiently formed on Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chain than in Galbeta1-->4GlcNAcbeta1-->6Manalpha-->R, due to preferential action of iGnT on Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chain. On the other hand, galactosylation was much more efficient on beta1,6-linked GlcNAc than beta1,2-linked GlcNAc, preferentially forming Galbeta1-->4GlcNAcbeta1-->6(GlcNAcbeta1-->2)Manalph a1-->6Manbeta -->R. Starting with this preformed acceptor, N-acetyllactosamine repeats were added almost equally to Galbeta1-->4GlcNAcbeta1-->6Manalpha-->R and Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chains. Taken together, these results indicate that the complemental branch specificity of iGnT and beta4Gal-TI leads to efficient and equal addition of N-acetyllactosamine repeats on both side chains of GlcNAcbeta1-->6(GlcNAcbeta1-->2)Manalpha1-->6Manbet a-->R structure, which is consistent with the structures found in nature. The results also suggest that the addition of Galbeta1-->4GlcNAcbeta1-->6 side chain on Galbeta1-->4GlcNAcbeta1-->2Man-->R side chain converts the acceptor to one that is much more favorable for iGnT and beta4Gal-TI.  相似文献   

13.
6-O-Sulfated galactose residues have been demonstrated in the glycosaminoglycan-protein linkage region GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser isolated from shark cartilage chondroitin 6-sulfate (Sugahara, K., Ohi, Y., Harada, T., de Waard, P., and Vliegenthart, J. F. G. (1992) J. Biol. Chem. 267, 6027-6035). In this study, we investigated whether a recombinant human chondroitin 6-sulfotransferase-1 (C6ST-1) catalyzes the sulfation of C6 on both galactose residues in the linkage region using structurally defined acceptor substrates. The C6ST-1 was expressed as a soluble protein A chimeric form in COS-1 cells and purified using IgG-Sepharose. The purified C6ST-1 utilized the linkage tri-, tetra-, penta-, and hexasaccharide-serines and hexasaccharide alditols, including GlcUAbeta1-3GalNAc(4-O-sulfate)beta1-4GlcUAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xylbeta1-O-Ser and DeltaGlcUAbeta1-3GalNAc(6-O-sulfate)beta1-4GlcUAbeta1-3Galbeta1-3Gal(6-O-sulfate)beta1-4Xyl-ol. Identification of the reaction products obtained with the linkage tetra-, penta-, and hexasaccharide-serines revealed that the C6ST-1 catalyzed the sulfation of C6 on both galactose residues in the linkage region. Notably, the linkage tetrasaccharide-peptide GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-(Gly)Ser-(Gly-Glu) was a good acceptor substrate for the C6ST-1, suggesting that the sulfation of the galactose residues can occur before the transfer of the first N-acetylhexosamine residue to the linkage tetrasaccharide. In contrast, no incorporation was observed into DeltaGlcUAbeta1-3GalNAc(4-O-sulfate)beta1-4GlcUAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xyl-ol, indicating that an intact xylose is necessary for the transfer of a sulfate to the second sugar residue Gal from the reducing end. These findings clearly demonstrated that the recombinant C6ST-1 catalyzes the sulfation of C6 on both galactose residues in the linkage region in vitro. This is the first identification of the sulfotransferase responsible for the sulfation of galactose residues in the glycosaminoglycan-protein linkage region.  相似文献   

14.
Wu AM  Singh T  Wu JH  Lensch M  André S  Gabius HJ 《Glycobiology》2006,16(6):524-537
Cell-surface glycans are functional docking sites for tissue lectins such as the members of the galectin family. This interaction triggers a wide variety of responses; hence, there is a keen interest in defining its structural features. Toward this aim, we have used enzyme-linked lectinosorbent (ELLSA) and inhibition assays with the prototype rat galectin-5 and panels of free saccharides and glycoconjugates. Among 45 natural glycans tested for lectin binding, galectin-5 reacted best with glycoproteins (gps) presenting a high density of Galbeta1-3/4GlcNAc (I/II) and multiantennary N-glycans with II termini. Their reactivities, on a nanogram basis, were up to 4.3 x 10(2), 3.2 x 10(2), 2.5 x 10(2), and 1.7 x 10(4) times higher than monomeric Galbeta1-3/4GlcNAc (I/II), triantennary-II (Tri-II), and Gal, respectively. Galectin-5 also bound well to several blood group type B (Galalpha1-3Gal)- and A (GalNAcalpha1-3Gal)-containing gps. It reacted weakly or not at all with tumor-associated Tn (GalNAcalpha1-Ser/Thr) and sialylated gps. Among the mono-, di-, and oligosaccharides and mammalian glycoconjugates tested, blood group B-active II (Galalpha1-3Gal beta1-4GlcNAc), B-active IIbeta1-3L (Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc), and Tri-II were the best. It is concluded that (1) Galbeta1-3/4GlcNAc and other Galbeta1-related oligosaccharides with alpha1-3 extensions are essential for binding, their polyvalent form in cellular glycoconjugates being a key recognition force for galectin-5; (2) the combining site of galectin-5 appears to be of a shallow-groove type sufficiently large to accommodate a substituted beta-galactoside, especially with alpha-anomeric extension at the non-reducing end (e.g., human blood group B-active II and B-active IIbeta1-3L); (3) the preference within beta-anomeric positioning is Galbeta1-4 > or = Galbeta1-3 > Galbeta1-6; and (4) hydrophobic interactions in the vicinity of the core galactose unit can enhance binding. These results are important for the systematic comparison of ligand selection in this family of adhesion/growth-regulatory effectors with potential for medical applications.  相似文献   

15.
In our previous paper (Kimura, Y., et al., Biosci. Biotechnol. Biochem., 67, 1852-1856, 2003), we found that a complex type N-glycans containing beta1-3 galactose residue occurs on royal jelly glycoproteins. During structural analysis of minor components of royal jelly N-glycans, we found complex type N-glycans bearing both galactose and N-acetylgalactosamine residues. Detailed structural analysis of pyridylaminated oligosaccharide revealed that the newly found N-glycan had a complex type structure harboring a tumor marker (T-antigen) unit: Galbeta1-3GalNAcbeta1-4GlcNAcbeta1-2Manalpha1-6 (Galbeta1-3GalNAcbeta1-4GlcNAcbeta1-2Manalpha1-3) Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this may be the first report of the presence of the T-antigen unit in the N-glycan moiety of eucaryotic glycoproteins.  相似文献   

16.
Murine sperm initiate fertilization by binding to specific oligosaccharides linked to the zona pellucida, the specialized matrix coating the egg. Biophysical analyses have revealed the presence of both high mannose and complex-type N-glycans in murine zona pellucida. The predominant high mannose-type glycan had the composition Man(5)GlcNAc(2), but larger oligosaccharides of this type were also detected. Biantennary, triantennary, and tetraantennary complex-type N-glycans were found to be terminated with the following antennae: Galbeta1-4GlcNAc, NeuAcalpha2-3Galbeta1-4GlcNAc, NeuGcalpha2-3Galbeta1-4GlcNAc, the Sd(a) antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc, NeuGcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc), and terminal GlcNAc. Polylactosamine-type sequence was also detected on a subset of the antennae. Analysis of the O-glycans indicated that the majority were core 2-type (Galbeta1-4GlcNAcbeta1-6[Galbeta1-3]GalNAc). The beta1-6-linked branches attached to these O-glycans were terminated with the same sequences as the N-glycans, except for terminal GlcNAc. Glycans bearing Galbeta1-4GlcNAcbeta1-6 branches have previously been suggested to mediate initial murine gamete binding. Oligosaccharides terminated with GalNAcbeta1-4Gal have been implicated in the secondary binding interaction that occurs following the acrosome reaction. The significant implications of these observations are discussed.  相似文献   

17.
N-Acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) transfers sulfate to the C-6 position of non-reducing N-acetylglucosamine (GlcNAc) residues. We cloned human and mouse cDNAs encoding a novel GlcNAc6ST, designated as GlcNAc6ST-4, which showed sequence identities of 26 to 41% to other GlcNAc6STs. Human organs with strong expression of the enzyme mRNA were the heart, spleen, and ovary, while in the mouse strong expression was detected in the kidney. The enzyme expressed in CHO cells preferentially acted on mannose-linked GlcNAc, while a core 2 mucin-type oligosaccharide and an N-acetyllactosamine oligomer also served as acceptors. The distribution and the specificity of GlcNAc6ST are different from those of GlcNAc6STs identified previously.  相似文献   

18.
The cDNA and gene encoding human N-acetylglucosamine-6-O-sulfotransferase (Gn6ST) have been cloned. Comparative analysis of this cDNA with the mouse Gn6ST sequence indicates 96% amino acid identity between the two sequences. The expression of a soluble recombinant form of the protein in COS-1 cells produced an active sulfotransferase, which transferred sulfate to the terminal GlcNAc in GlcNAcbeta1-O-CH(3), GlcNAcbeta1-3Galbeta1-O-CH(3) and GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Gl cNAc but not in GlcNAcalpha1-4GlcAbeta1-3Galbeta1-3Galbeta1-4 Xylbeta1-O-Ser. In addition, neither Galbeta1-4GlcNAcbeta1-O-naphthalenemethanol nor GalNAcbeta1-4GlcAbeta1-3Galbeta1-3Galbeta1-4X ylbeta1-O-Ser were utilized as acceptors. These findings indicate that a terminal beta-linked GlcNAc residue is necessary for acceptor substrates of Gn6ST. The human Gn6ST gene spans about 7 kb, consists of two exons and exhibits an intron-less coding region.  相似文献   

19.
In a previous study (Y. Kimura et al., Biosci. Biotechnol. Biochem., 70, 2583-2587, 2006), we found that new complex type N-glycans harboring Thomsen-Friedenreich antigen (Galbeta1-3GalNAc) unit occur on royal jelly glycoproteins, suggesting the involvement of a new beta1-3galactosyltransferase in the synthesis of the unusual complex type N-glycans. So far, such beta1-3galactosyltransferase activity, which can transfer galactosyl residues with the beta1-3 linkage to beta1-4 GalNAc residues in N-glycan, has not been found among any eucaryotic cells. But using GalNAc(2)GlcNAc(2)Man(3)GlcNAc(2)-PA as acceptor N-glycan, we detected the beta1-3 galactosyltransferase activity in membrane fraction prepared from honeybee cephalic portions. This result indicates that honeybee expresses a unique beta1-3 galactosyltransferase involved in biosynthesis of the unusual N-glycan containing a tumor related antigen in the hypopharyngeal gland.  相似文献   

20.
We had shown previously that all major glycoproteins of pigeon egg white contain Galalpha1-4Gal epitopes (Suzuki, N., Khoo, K. H., Chen, H. C., Johnson, J. R., and Lee, Y. C. (2001) J. Biol. Chem. 276, 23221-23229). We now report that Galalpha1-4Gal-bearing glycoproteins are also present in pigeon serum, lymphocytes, and liver, as probed by Western blot with Griffonia simplicifolia-I lectin (specific for terminal alpha-Gal) and anti-P1 (specific for Galalpha1-4Galbeta1-4GlcNAcbeta1-) monoclonal antibody. One of the major glycoproteins from pigeon plasma was identified as IgG (also known as IgY), which has Galalpha1-4Gal in its heavy chains. High pressure liquid chromatography, mass spectrometric (MS), and MS/MS analyses revealed that N-glycans of pigeon serum IgG included (i) high mannose-type (33.3%), (ii) disialylated biantennary complex-type (19.2%), and (iii) alpha-galactosylated complex-type N-glycans (47.5%). Bi- and tri-antennary oligosaccharides with bisecting GlcNAc and alpha1-6 Fuc on the Asn-linked GlcNAc were abundant among N-glycans possessing terminal Galalpha1-4Gal sequences. Moreover, MS/MS analysis identified Galalpha1-4Galbeta1-4Galbeta1-4GlcNAc branch terminals, which are not found in pigeon egg white glycoproteins. An additional interesting aspect is that about two-thirds of high mannose-type N-glycans from pigeon IgG were monoglucosylated. Comparison of the N-glycan structures with chicken and quail IgG indicated that the presence of high mannose-type oligosaccharides may be a characteristic of these avian IgG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号