首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the lipoprotein lipase (LPL) gene of a 2-year-old patient presenting classical features of the familial LPL deficiency including undetectable LPL activity. DNA sequence analysis of exon 5 identified the patient as a homozygote for the Gly188Glu mutation, frequently involved in this disease. A review of cases of LPL deficiency with molecular study of the LPL gene showed a total number of 221 reported mutations involved in this disease. Gly188Glu was involved in 23.5 % of cases and 74.6 % of mutations were clustered in exons 5 and 6. Based on these observations, we propose a method of screening for mutations in this gene.  相似文献   

2.
Summary Mutations in the lipoprotein lipase (LPL) gene, leading to partial or total inactivation of the enzyme, result in a hereditary clinical syndrome called familial LPL deficiency. The French Canadian population, which is primarily and historically located in the province of Québec, has the highest worldwide frequency of LPL-deficient patients. We have analyzed the prevalence, spatial distribution, and genealogy in the Québec population of a LPL gene mutation, M-207 (P207L in conventional notation), which changes the amino acid proline to leucine in position 207 of the LPL protein and inactivates the enzyme. Our results show that M-207 is the most prevalent LPL gene mutation among French Canadians and accounts for the largest proportion of LPL-deficient patients in this population. Genealogical reconstruction of French Canadian LPL-deficient patients point to 16 founders of M-207, all of whom migrated to Québec in the early seventeenth century from the north-western part of France, especially from the region of Perche. Most of the carriers of M-207 are, at present, found in the Charlevoix, Saguenay-Lac-St-Jean regions of eastern Québec. On the basis of the number of homozygote M-207 LPL-deficient patients so far identified, we estimate that there are at least 31,000 carriers of this mutation in the province of Québec. This constitutes a large pool of individuals at risk for atherosclerosis and other lipid-related diseases, since LPL deficiency is considered to be a significant contributing factor in the etiology and development of these diseases.  相似文献   

3.
We have previously reported two common lipoprotein lipase (LPL) gene mutations underlying LPL deficiency in the majority of 37 French Canadians (Monsalve et al., 1990. J. Clin. Invest. 86: 728-734; Ma et al., 1991. N. Engl. J. Med. 324: 1761-1766). By examining the 10 coding exons of the LPL gene in another French Canadian patient, we have identified a third missense mutation that is found in two of the three remaining patients for whom mutations are undefined. This is a G to A transition in exon 6 that results in a substitution of asparagine for aspartic acid at residue 250. Using in vitro site-directed mutagenesis, we have confirmed that this mutation causes a catalytically defective LPL protein. In addition, the Asp250----Asn mutation was also found on the same haplotype in an LPL-deficient patient of Dutch ancestry, suggesting a common origin. This mutation alters a TaqI restriction site in exon 6 and will allow for rapid screening in patients with LPL deficiency.  相似文献   

4.
Two novel mutations in the lipoprotein lipase (LPL) gene are described in an Austrian family: a splice site mutation in intron 1 (3 bp deletion of nucleotides -2 to -4) which results in skipping of exon 2, and a missense mutation in exon 5 which causes an asparagine for histidine substitution in codon 183 and complete loss of enzyme activity. A 5-year-old boy who exhibited all the clinical features of primary hyperchylomicronemia was a compound heterozygote for these two mutations. Nine other family members were investigated: seven were heterozygotes for the splice site mutation, one was a heterozygote for the missense mutation, and one had two wild-type alleles of the LPL gene. LPL activity in the post-heparin plasma of the heterozygotes was reduced to 49;-79% of the mean observed in normal individuals. Two of the heterozygotes had extremely high plasma triglyceride levels; in three of the other heterozygotes the plasma triglycerides were also elevated. As plasma triglycerides in carriers of one defective LPL allele can be normal or elevated, the heterozygotes of this family have been studied for a possible additional cause of the expression of hypertriglyceridemia in these subjects. Body mass index, insulin resistance, mutations in other candidate genes (Asn291Ser and Asp9Asn in the LPL gene, apoE isoforms, polymorphisms in the apoA-II gene and in the apoAI-CIII-AIV gene cluster, and in the IRS-1 gene) could be ruled out as possible factors contributing to the expression of hypertriglyceridemia in this family. A linkage analysis using the allelic marker D1S104 on chromosome 1q21;-q23 suggested that a gene in this region could play a role in the expression of hypertriglyceridemia in the heterozygous carriers of this family, but the evidence was not sufficiently strong to prove this assumption. Nevertheless, this polymorphic marker seems to be a good candidate for further studies.  相似文献   

5.
We have investigated a patient of English ancestry with familial chylomicronemia caused by lipoprotein lipase (LPL) deficiency. DNA sequence analysis of all exons and intron-exon boundaries of the LPL gene identified two single-base mutations, a T----C transition for codon 86 (TGG) at nucleotide 511, resulting in a Trp86----Arg substitution, and a C----T transition at nucleotide 571, involving the codon CAG encoding Gln106 and producing Gln106----Stop, a mutation described by Emi et al. The functional significance of the two mutations was confirmed by in vitro expression and enzyme activity assays of the mutant LPL. Linkage analysis established that the patient is a compound heterozygote for the two mutations. The Trp86----Arg mutation in exon 3 is the first natural mutation identified outside exons 4-6, which encompass the catalytic triad residues.  相似文献   

6.
We are studying naturally occurring mutations in the gene for lipoprotein lipase (LPL) to advance our knowledge about the structure/function relationships for this enzyme. We and others have previously described 11 mutations in human LPL gene and until now none of these directly involves any of the residues in the proposed Asp156-His241-Ser132 catalytic triad. Here we report two separate probands who are deficient in LPL activity and have three different LPL gene haplotypes, suggesting three distinct mutations. Using polymerase chain reaction cloning and DNA sequencing we have identified that proband 1 is a compound heterozygote for a G----A transition at nucleotide 721, resulting in a substitution of asparagine for aspartic acid at residue 156, and a T----A transversion, resulting in a substitution of serine for cysteine at residues 216. Proband 2 is homozygous for an A----G base change at nucleotide 722, leading to a substitution of glycine for aspartic acid at residue 156. The presence of these mutations in the patients and available family members was confirmed by restriction analysis of polymerase chain reaction-amplified DNA. In vitro site-directed mutagenesis and subsequent expression in COS cells have confirmed that all three mutations result in catalytically defective LPL. The two naturally occurring mutations, which both alter the same aspartic acid residue in the proposed Asp156-His241-Ser132 catalytic triad of human LPL, indicate that Asp156 plays a significant role in LPL catalysis. The Cys216----Ser mutation destroys a conserved disulfide bridge that is apparently critical for maintaining LPL structure and function.  相似文献   

7.
The enzyme lipoprotein lipase (LPL) plays a crucial role in triglyceride metabolism through catalysis of triglyceride-rich chylomicrons and very low density lipoproteins. Primary LPL deficiency manifests with chylomicronaemia and is caused by mutations in the LPL gene. In this paper we report a novel molecular defect (G670A) in exon 4 of the LPL gene, resulting in a substitution of serine for glycine at position 139 in the mature protein. We identified homozygosity for this mutation in a boy of Spanish descent. In vitro mutagenesis provided formal proof that this missense mutation completely abolishes LPL function and therefore is the cause of LPL deficiency.  相似文献   

8.
We have identified the molecular basis for familial lipoprotein lipase (LPL) deficiency in two unrelated families with the syndrome of familial hyperchylomicronemia. All 10 exons of the LPL gene were amplified from the two probands' genomic DNA by polymerase chain reaction. In family 1 of French descent, direct sequencing of the amplification products revealed that the patient was heterozygous for two missense mutations, Gly188----Glu (in exon 5) and Asp250----Asn (in exon 6). In family 2 of Italian descent, sequencing of multiple amplification products cloned in plasmids indicated that the patient was a compound heterozygote harboring two mutations, Arg243----His and Asp250----Asn, both in exon 6. Studies using polymerase chain reaction, restriction enzyme digestion (the Gly188----Glu mutation disrupts an Ava II site, the Arg243----His mutation, a Hha I site, and the Asp250----Asn mutation, a Taq I site), and allele-specific oligonucleotide hybridization confirmed that the patients were indeed compound heterozygous for the respective mutations. LPL constructs carrying the three mutations were expressed individually in Cos cells. All three mutant LPLs were synthesized and secreted efficiently; one (Asp250----Asn) had minimal (approximately 5%) catalytic activity and the other two were totally inactive. The three mutations occurred in highly conserved regions of the LPL gene. The fact that the newly identified Asp250----Asn mutation produced an almost totally inactive LPL and the location of this residue with respect to the three-dimensional structure of the highly homologous human pancreatic lipase suggest that Asp250 may be involved in a charge interaction with an alpha-helix in the amino terminal region of LPL. The occurrence of this mutation in two unrelated families of different ancestries (French and Italian) indicates either two independent mutational events affecting unrelated individuals or a common shared ancestral allele. Screening for the Asp250----Asn mutation should be included in future genetic epidemiology studies on LPL deficiency and familial combined hyperlipidemia.  相似文献   

9.
为进行脂蛋白脂肪酶基因突变与中国人群高脂血症的相关性研究,采用单链构象多态性分析结合DNA序列测定的方法,对386例(其中108例高脂血症患者,278例正常对照)中国人群进行突变筛查。结果发现1个新的沉默突变L103L,1个错义突变P207L,3个剪接突变Int3/3′-ass/C(-6)→T和普遍存在的S447X多态性,其中发生在高脂血症组的P207L杂合子为亚洲首报,并对先证者的家系进行了研究,认为P207L是家族性高脂血症的病因之一,而在正常对照组中也有发现的Int3/3′-ass/C(-6)→T,对以往研究认为其是高脂血症易患因素的观点提出了相反的报告,对于普遍认为有益的多态性位点S447X,进一步研究认为其对于正常人群,特别是健康男性的保护作用更强。结论:脂蛋白脂肪酶基因变异与高脂血症的相关性十分复杂多样,大规模的人群筛查具有重要意义。  相似文献   

10.
We have systematically investigated the molecular defects resulting in a primary lipoprotein lipase (LPL) deficiency in a Japanese male infant (proband SH) with fasting hyperchylomicronemia. Neither LPL activity nor immunoreactive LPL mass was detected in pre- or postheparin plasma from proband SH. DNA sequence analysis of the LPL gene of proband SH revealed homozygosity for a novel missense mutation of F270L (Phe(270)-->Leu/TTT(1065)-->TTG) in exon 6. The function of the mutant F270L LPL was determined by both biochemical and immunocytochemical studies. In vitro expression experiments on the mutant F270L LPL cDNA in COS-1 cells demonstrated that the mutant LPL protein was synthesized as a catalytically inactive form and its total amount was almost equal to that of the normal LPL. Moreover, the synthesized mutant LPL was non-releasable by heparin because the intracellular transport of the mutant LPL to the cell surface - by which normal LPL becomes heparin-releasable - was impaired due to the abnormal structure of the mutant LPL protein. These findings explain the failure to detect LPL activities and masses in pre- and postheparin plasma of the proband. The mutant F270L allele generated an XcmI restriction enzyme site in exon 6 of the LPL gene. The carrier status of F270L in the proband's family members was examined by digestion with XcmI. The proband was ascertained to be homozygous for the F270L mutation and his parents and sister were all heterozygous. The LPL activities and masses of the parents and the sister (carriers) were half or less than half of the control values. Regarding the phenotype of the carriers, the mother with a sign of hyperinsulinemia manifested hypertriglyceridemia (type IV hyperlipoproteinemia), whereas the healthy father and the sister were normolipidemic. Hyperinsulinemia may be a strong determinant of hypertriglyceridemia in subjects with heterozygous LPL deficiency.  相似文献   

11.
Newly synthesized lipoprotein lipase (LPL) and related members of the lipase gene family require an endoplasmic reticulum maturation factor for attainment of enzyme activity. This factor has been identified as lipase maturation factor 1 (Lmf1), and mutations affecting its function and/or expression result in combined lipase deficiency (cld) and hypertriglyceridemia. To assess the functional impact of Lmf1 sequence variations, both naturally occurring and induced, we report the development of a cell-based assay using LPL activity as a quantitative reporter of Lmf1 function. The assay uses a cell line homozygous for the cld mutation, which renders endogenous Lmf1 nonfunctional. LPL transfected into the mutant cld cell line fails to attain activity; however, cotransfection of LPL with wild-type Lmf1 restores its ability to support normal lipase maturation. In this report, we describe optimized conditions that ensure the detection of a complete range of Lmf1 function (full, partial, or complete loss of function) using LPL activity as the quantitative reporter. To illustrate the dynamic range of the assay, we tested several novel mutations in mouse Lmf1. Our results demonstrate the ability of the assay to detect and analyze Lmf1 mutations having a wide range of effects on Lmf1 function and protein expression.  相似文献   

12.
We have identified a G-to-A transition in exon 3 of the APOC3 gene resulting in a novel Ala23Thr apolipoprotein (apo) C-III variant, associated with apoC-III deficiency in three unrelated Yucatan Indians. The Ala23Thr substitution modifies the hydrophobic/hydrophilic repartition of the helical N-terminal peptide and hence could disturb the lipid association. In vitro expression in Escherichia coli of wild-type and mutant apoC-III enabled the characterization of the variant. Compared with wild-type apoC-III-Ala23, the mutant apoC-III-Thr23 showed reduced affinity for dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles with higher amounts of free apoC-III. Displacement of apoE from discoidal apoE:dipalmitoylphosphatidycholine (DPPC) complex by apoC-III-Thr23 was comparable to wild type but the less efficient binding of the apoC-III-Thr23 to the discoidal complex resulted in a higher apoE/apoC-III (mol/mol) ratio (34%) than with wild-type/apoE:DPPC mixtures. The inhibition of lipoprotein lipase (LPL) by apoC-III-Thr23 was comparable to that of wild type, and therefore effects on LPL activity could not explain the lower triglyceride (Tg) levels in Thr-23 carriers. Thus, these in vitro results suggest that in vivo the less efficient lipid binding of apoC-III-Thr23 might lead to a faster catabolism of free apoC-III, reflected in the reduced plasma apoC-III levels identified in Thr-23 carriers, and poorer competition with apoE, which might enhance clearance of Tg-rich lipoproteins and lower plasma Tg levels seen in Thr-23 carriers.  相似文献   

13.
Hu Y  Ren Y  Luo RZ  Mao X  Li X  Cao X  Guan L  Chen X  Li J  Long Y  Zhang X  Tian H 《Journal of lipid research》2007,48(8):1681-1688
Increased plasma triglyceride and free fatty acid levels are frequently associated with type 2 diabetes mellitus (T2DM). To test the hypothesis that LPL gene mutations contribute to the hypertriglyceridemia observed in members of T2DM pedigrees, we screened the LPL gene in 53 hypertriglyceridemic members of 26 families. Four known and three novel mutations were identified. All three novel mutations, Lys312insC, Thr361insA, and double mutation Lys312insC + Asn291Ser, are clinically associated with hypertriglyceridemia. In vitro mutagenesis and expression studies confirm that these variants are associated with a significant reduction in LPL activity. The modeled structures displaying the Lys312insC and Thr361insA mutations showed loss of the activity-related C-terminal domain in the LPL protein. Another novel double mutation, Lys312insC + Asn291Ser, resulted in the loss of the catalytic ability of LPL attributable to the complete loss of the C-terminal domain and alteration in the heparin association site. Thus, these novel mutations of the LPL gene contribute to the hypertriglyceridemia observed in members of type 2 diabetic pedigrees.  相似文献   

14.
The mutations cld (combined lipase deficiency) and lec23 disrupt in a similar manner the expression of lipoprotein lipase (LPL). Whereas cld affects an unknown gene, lec23 abolishes the activity of alpha-glucosidase I, an enzyme essential for proper folding and assembly of nascent glycoproteins. The hypothesis that cld, like lec23, affects the folding/assembly of nascent LPL was confirmed by showing that in cell lines homozygous for these mutations (Cld and Lec23, respectively), the majority of LPL was inactive, displayed heterogeneous aggregation, and had a decreased affinity for heparin. While inactive LPL was retained in the ER, a small amount of LPL that had attained a native conformation was transported through the Golgi and secreted. Thus, Cld and Lec23 cells recognized and retained the majority of LPL as misfolded, maintaining the standard of quality control. Examination of candidate factors affecting protein maturation, such as glucose addition and trimming, proteins involved in lectin chaperone cycling, and other abundant ER chaperones, revealed that calnexin levels were dramatically reduced in livers from cld/cld mice; this finding was also confirmed in Cld cells.We conclude that cld may affect components in the ER, such as calnexin, that play a role in protein maturation. Whether the reduced calnexin levels per se contribute to the LPL deficiency awaits confirmation.  相似文献   

15.
16.
A large family is reported with familial hepatic triglyceride lipase (HTGL) deficiency and with the coexistence of reduced lipoprotein lipase (LPL) similar to the heterozygote state of LPL deficiency. The proband was initially detected because of hypertriglyceridemia and chylomicronemia. He was later demonstrated to have beta-VLDL despite an apo E3/E3 phenotype and the lack of stigmata of type III hyperlipoproteinemia. The proband had no HTGL activity in postheparin plasma. Two of his half-sisters had very low HTGL activity (39 and 31 nmol free fatty acids/min/ml; normal adult female greater than 44). His son and daughters had decreased HTGL activity (normal male and preadolescent female greater than 102), which would be expected in obligate heterozygotes for HTGL deficiency. Low HTGL activity was associated with LDL particles which were larger and more buoyant. Several family members, including the proband, had reduced LPL activity and mass less than that circumscribed by the 95% confidence-interval ellipse for normal subjects and had hyperlipidemia similar to that described in heterozygote relatives of patients with LPL deficiency. All the sibs with hyperlipidemia had a reduced LPL activity and mass, while subjects with isolated reduced HTGL (with normal LPL activity) had normal lipid phenotypes. Analysis of genomic DNA from these subjects by restriction-enzyme digestion revealed no major abnormalities in the structure of either the HTGL or the LPL gene. Compound heterozygotes for HTGL and LPL deficiency show lipoprotein physiological characteristics typical for HTGL deficiency, while their variable lipid phenotype is typical for LPL deficiency.  相似文献   

17.
Individuals with loss-of-function mutations in the ANGPTL3 gene express a rare lipid phenotype called Familial Combined Hypolipidemia (FHBL2). FHBL2 individuals show reduced plasma concentrations of total cholesterol and triglycerides as well as of lipoprotein particles, including HDL. This feature is particularly remarkable in homozygotes in whom ANGPTL3 in blood is completely absent. ANGPTL3 acts as a circulating inhibitor of LPL and EL and it is thought that EL hyperactivity is the cause of plasma HDL reduction in FHBL2. Nevertheless, the consequences of ANGTPL3 deficiency on HDL functionality have been poorly explored. In this report, HDL isolated from homozygous and heterozygous FHBL2 individuals were evaluated for their ability to preserve endothelial homeostasis as compared to control HDL. It was found that only the complete absence of ANGPTL3 alters HDL subclass distribution, as homozygous, but not heterozygous, carriers have reduced content of large and increased content of small HDL with no alterations in HDL2 and HDL3 size. The plasma content of preβ-HDL was reduced in carriers and showed a positive correlation with plasma ANGPTL3 levels. Changes in composition did not however alter the functionality of FHBL2 HDL, as particles isolated from carriers retained their capacity to promote NO production and to inhibit VCAM-1 expression in endothelial cells. Furthermore, no significant changes in circulating levels of soluble ICAM-1 and E-selectin were detected in carriers. These results indicate that changes in HDL composition associated with the partial or complete absence of ANGPTL3 did not alter some of the potentially anti-atherogenic functions of these lipoproteins.  相似文献   

18.
Genome-wide association studies have identified GALNT2 as a candidate gene in lipid metabolism, but it is not known how the encoded enzyme ppGalNAc-T2, which contributes to the initiation of mucin-type O-linked glycosylation, mediates this effect. In two probands with elevated plasma high-density lipoprotein cholesterol and reduced triglycerides, we identified a mutation in GALNT2. It is shown that carriers have improved postprandial triglyceride clearance, which is likely attributable to attenuated glycosylation of apolipoprotein (apo) C-III, as observed in their plasma. This protein inhibits lipoprotein lipase (LPL), which hydrolyses plasma triglycerides. We show that an apoC-III-based peptide is a substrate for ppGalNAc-T2 while its glycosylation by the mutant enzyme is impaired. In addition, neuraminidase treatment of apoC-III which removes the sialic acids from its glycan chain decreases its potential to inhibit LPL. Combined, these data suggest that ppGalNAc-T2 can affect lipid metabolism through apoC-III glycosylation, thereby establishing GALNT2 as a lipid-modifying gene.  相似文献   

19.
PURPOSE OF REVIEW: In this review we compare the phenotype and lipoprotein abnormalities of some patients who were found to carry mutations in the APOA5 gene predicted to result in apolipoprotein A-V deficiency. RECENT FINDINGS: The sequencing of the APOA5 gene in patients with primary hypertriglyceridemia, in whom mutations of the LPL and APOC2 genes had been excluded, led to the identification of four families with two different mutations in this gene predicted to result in truncated apolipoprotein A-V. The first mutation (Q148X) was found in a homozygous state in a child with severe type V hyperlipidemia, some clinical manifestations of chylomicronemia syndrome and a slight reduction in plasma postheparin lipoprotein lipase activity. Carriers of a different mutation (Q139X) were recently reported. Four Q139X heterozygotes had type V hyperlipidemia and markedly reduced plasma postheparin lipoprotein lipase activity. The hypertriglyceridemic Q139X heterozygote had other factors that could have contributed to hypertriglyceridemia. ApoB-100 kinetic studies in hypertriglyceridemic Q139X heterozygotes revealed an impairment of very low-density lipoprotein catabolism. SUMMARY: Mutations in the APOA5 gene, leading to truncated apolipoprotein A-V devoid of lipid-binding domains located in the carboxy-terminal end of the protein, if present in the homozygous state, are expected to cause severe type V hyperlipidemia in patients with no mutations in LPL or APOC2 genes. If present in the heterozygous state, these mutations predispose to hypertriglyceridemia in combination with other genetic factors or pathological conditions.  相似文献   

20.
Familial combined hyperlipidemia (FCHL) is a complex genetic disorder of unknown etiology. Recently, 'modifier' genes of the FCHL phenotype, such as the apolipoprotein AI-CIII-AIV gene cluster and LPL, have been identified in several populations. A 'major' gene for FCHL has been identified in a Finnish isolate which maps to a region syntenic to murine chromosome 3 where a locus for combined hyperlipidemia has been identified. We review these and other recent studies which indicate that FCHL is genetically heterogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号