首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The various layers of the cell envelope of marine pseudomonad B-16 (ATCC 19855) have been separated from the cells and assayed directly for alkaline phosphatase activity under conditions established previously to be optimum for maintenance of the activity of the enzyme. Under conditions known to lead to the release of the contents of the periplasmic space from the cells, over 90% of the alkaline phosphatase was released into the medium. Neither the loosely bound outer layer nor the outer double-track layer (cell wall membrane) showed significant activity. A small amount of the alkaline phosphatase activity of the cells remained associated with the mureinoplasts when the outer layers of the cell wall were removed. Upon treatment of the mureinoplasts with lysozyme, some alkaline phosphatase was released into the medium and some remained with the protoplasts formed. Cells washed and suspended in 0.5 M NaCl were lysed by treatment with 2% toluene, and 95% of the alkaline phosphatase in the cells was released into the medium. Cells washed and suspended in complete salts solution (0.3 M NaCl, 0.05 M MgSO(4), and 0.01 M KCl) or 0.05 M MgSO(4) appeared intact after treatment with toluene but lost 50 and 10%, respectively, of their alkaline phosphatase. The results suggest that the presence of Mg(2+) in the cell wall is necessary to prevent disruption of the cells by toluene and may also be required to prevent the release of alkaline phosphatase by toluene when disruption of the cells by toluene does not take place.  相似文献   

2.
When cells of a marine pseudomonad were washed and suspended in 0.5 m sucrose, they retained their rod shape, but thin sections, when examined in an electron microscope, revealed that the outer layer of the cell wall had separated a considerable distance from the cytoplasmic membrane. Treatment of such cells with lysozyme alone produced no obvious change, but treatment with ethylenediaminetetraacetic acid (EDTA) alone caused the outer wall to disappear. A combination of EDTA and lysozyme resulted in the rapid formation of spheres essentially free from hexosamine and indistinguishable from protoplasts of gram-positive bacteria. When cells were washed with 0.5 m NaCl and then suspended in 0.5 m sucrose, they also retained their rod shape, but in this case the outer layer separated from the cells completely and could be recovered from the suspending medium. Such cells were converted to protoplasts by the action of lysozyme alone. Cells washed and finally suspended in 0.5 m NaCl, when treated with EDTA and lysozyme, slowly became spherical. Thin sections revealed typical spheroplasts of gram-negative bacteria in which the outer wall remained intact. Protoplasts took up alpha-aminoisobutyric acid by a Na(+)-dependent process.  相似文献   

3.
Of the three species (Bacteroides ruminicola, B. succinogenes, and Megasphaera elsdenii) of anaerobic gram-negative rumen bacteria studied, only B. ruminicola produced significant amounts of alkaline phosphatase. This enzyme, which is constitutive, showed a greater affinity for p-nitrophenylphosphate than for sodium-beta-glycerophosphate and was shown to be located exclusively in the periplasmic space of log-phase cells. Small amounts of this enzyme were released from these cells in stationary-phase cultures, but washing in 0.01 M MgCl(2) and the production of spheroplasts by using lysozyme in 0.01 M MgCl(2) did not release significant amounts of the enzyme. Exposure to 0.2 M MgCl(2) did not release significant amounts of the periplasmic alkaline phosphatase of the cell, and when these cells were spheroplasted with lysozyme in 0.2 M MgCl(2) only 25% of the enzyme was released. Spheroplasts were formed spontaneously in aging cultures of B. ruminicola, but even these cells retained most of their periplasmic alkaline phosphatase. It was concluded that the alkaline phosphatase of B. ruminicola is firmly bound to a structural component within the periplasmic area of the cell wall and that the enzyme is released in large amounts only when the cells break down. The behavior of alkaline phosphatase in this bacterium contrasts with that of conventional periplasmic enzymes of aerobic bacteria, which are released upon conversion into spheroplasts by lysozyme and ethylenediaminetetraacetic acid and by other types of cell wall damage. All three species of bacteria studied here, as well as bacteria found in mixed populations in the rumen, have thick, complex layers external to the double-track layer of their cell walls. In addition, B. ruminicola produces a loose extracellular material.  相似文献   

4.
The restricted access of lysozyme to the murein layer of exponential phase Escherichia coli is enhanced considerably by osmotic shock. When cells suspended in Tris/EDTA/sucrose are diluted 11-fold in water or 10 mM EDTA in the presence of lysozyme, their susceptibility to lysozyme increases by a factor of 50--100, for both Escherichia coli JC411 and W3110, grown to the early exponential phase in unsuppleneted or supplemented minimal media, and in Brain Heart Infusion. Since an 11-fold dilution causes lysis of lysozyme spheroplasts, the effects of a 2-fold dilution have also been investigated. A 2-fold dilution of cell suspended in TrisEDTA/sucrose still increases their susceptibility to lysozyme by a factor of 10--50, but the resulting spheroplasts remain intact. EDTA is necessary to permit lysozyme access to the murein layer during the dilution, which is ineffective in the presence of 5 mM MgCl2. These results are discussed in terms of the formation of lysozyme spheroplasts from young Escherichia coli.  相似文献   

5.
This report describes the ultrastructural features of Pseudomonas aeruginosa after freeze-etching of intact cells and enzymatically prepared spheroplasts. Freeze-etching of intact cells revealed two convex layers of the cell wall and particles within the hydrophobic interior of the cell membrane. Areas of the membrane free of particles were sometimes elevated in the form of rather large dome-shaped structures. Spheroplasts were formed from intact cells by the addition of trypsin to a reaction mixture of lysozyme and ethylenediaminetetraacetic acid. Spheroplasts contained the outer lipoid layer of the cell wall. It was possible to observe this cell wall layer in freeze-etch preparations of spheroplasts. The spheroplast membrane like that of intact cells was cleaved along a central plane to expose particles and particle-free areas.  相似文献   

6.
Summary The conversion of Mycobacterium sp. smegmatis cells into spheroplasts was achieved at a high rate by their treatment with either lysozyme (100 g/ml) or glycine (2%) in a liquid Dubos medium without albumine, stabilized by sucrose (up to 0.34 M). The dynamic of conversion was followed in hanging-drop preparations.Electron microscopic studies of induced spheroplasts were performed. Two types of membranes (80 Å and 130 Å in the width) together with tubular mesosomes localized either intracytoplasmatically or released were revealed.Differences between lysozyme and glycine induction in conversion rate and in time function were noted. Glycine spheroplasts were moreover characterized by numerous cell wall residues adhering to the cell surface and by the incidence of cytoplasmic exfoldings present in a considerably higher amount than in lysozyme induced spheroplasts.Based on these studies suggestions to the mechanism of inductive processes were pointed out.  相似文献   

7.
OBSERVATIONS ON THE FINE STRUCTURE OF SPHEROPLASTS OF RHODOSPIRILLUM RUBRUM   总被引:8,自引:3,他引:5  
Spheroplasts of the photosynthetic bacterium Rhodospirillum rubrum were prepared from cultures grown in either the presence or absence of light. Cells were converted into spheroplasts by using lysozyme and Versene and fixed in a sucrose-veronal-acetate buffer mixture containing osmium tetroxide. Some preparations were shadow-cast and examined whole; others were embedded in Epon 812 and sectioned. The action of lysozyme and Versene appears to result in removal of the cell wall in strips. The relationship of the chromatophores to the cytoplasmic membrane is readily visualized in sections of broken spheroplasts, and in areas the chromatophores are seen to be continuous with the membrane. In all preparations examined, no definite connections between individual chromatophores were observed. In some cells large spherical granules were evident which either possessed or lacked a clearly visible limiting membrane. On serial sectioning, all granules appeared bounded by a single membrane 40 A wide. The granule membrane was well defined only if the section came from the center of the granule. Sections at other levels showed either a diffuse membrane or no membrane at all. The reasons for this are discussed.  相似文献   

8.
The method of centrifugation in sucrose density gradient (30-55%) of the spheroplast membrane preparations treated and untreated with sturine and infected with phage lambda DNA demonstrated that sturine, treatment increased the phage lambda DNA absorption three-fold. About 50% of the lambda DNA molecules adsorbed by spheroplasts are bound with the cytoplasmic membrane of spheroplasts treated with sturine; 50% of the lambda DNA molecules are bound with the cell wall membrane on the sturine-untreated spheroplasts. The data obtained allow to conclude that the stimulating effect of sturine in E. coli spheroplasts transfection by lambda DNA is connected with redistribution of phage DNA absorbed on spheroplasts from the cell wall to the cytoplasmic membrane facilitating the penetration of DNA and its fastening on the membrane.  相似文献   

9.
Pseudomonas aeruginosa ATCC 9027 contains an inducible alkaline phosphatase. The enzyme is readily removed from 14-hr cells by washes in 0.2 m MgCl(2), pH 8.4. Similar washes in tris(hydroxymethyl)aminomethane buffer, 20% sucrose, monovalent ions, or water partially release enzyme from the cells. The release of alkaline phosphatase is correlated with an increased release of protein and retention of internal enzymes. The effect of 0.2 m MgCl(2) washing upon the cells is minimal since both viability and growth rates remain unchanged as compared to water washing. Although cells are plasmolyzed in both 0.2 m MgCl(2) and 20% sucrose, it is evident that plasmolysis alone is unable to account for total enzyme release and that a divalent metal, i.e. Mg(2+), augments the release pattern. Growing cells in the presence of increasing concentrations of MgCl(2) or at increased pH values results in an almost total secretion of the enzyme to the culture filtrate. The findings suggest that P. aeruginosa alkaline phosphatase is linked to the exocytoplasmic region through divalent metal ion, presumably Mg(2+), bridges.  相似文献   

10.
Whole cells of Pseudomonas aeruginosa possess rhodanese activity. The enzyme can be released by rapidly resuspending the cells in cold Tris--HCl buffer. Approximately 95% of the rhodanese activity is released by cold shock. Release of the enzyme can be inhibited either by preincubating the cells with Mg2+ or by incorporating Mg2+ into the shocking buffer. The effect of Mg2+ can be reversed by washing the cells twice with buffer prior to cold shock. While rhodanese can be released from P. aeruginosa by cold shock, lactic dehydrogenase, a cytoplasmic enzyme, remains within the cell. Diazo-7-amino-1,3-napthalenedisulfonic acid, a compound which does not penetrate the cytoplasmic membrane, completely inactivated rhodanese and alkaline phosphatase, a periplasmic enzyme, whereas lactic dehydrogenase retained its full activity. These data suggest that rhodanese in P. aeruginosa, like alkaline phosphatase, is located distal to the cytoplasmic membrane in the periplasmic space. Electron micrographs also show that portions of the lipopolysaccharide outer membrane are shed from the cell during cold shock, while cells preincubated with Mg2+ did not release segments of their outer membrane.  相似文献   

11.
In untreated cells of the marine pseudomonad studied here, alkaline phosphatase was found to be located in the periplasmic space, at the cell surface, and in the medium into which it had been shed during growth. Washing in 0.5 M NaCl, which removed the loosely bound outer layer, caused a shift of periplasmic enzyme to the outer aspect of the double-track layer and released some of the cell surface-associated enzyme. When the double-track layer of the cell wall was partially deranged, large amounts of this cell wall-associated enzyme were released, and, when the double-track was removed from the cells to produce mureinoplasts, alkaline phosphatase was released into the menstruum. There was no significant association of the enzyme with the peptidoglycan layer of the cell wall, which is the outermost structure of the mureinoplast, and no association of the enzyme with the cytoplasmic membrane of these modified cells. This study has shown that alkaline phosphatase is specifically associated with the outer layers of the cell walls of cells of this organism and is retained within the cell wall by virtue of this association.  相似文献   

12.
It was shown that the total amount of synthesized alkaline phosphatase as well as the value of enzymatic activity in E. coli cells decrease in the presence of the protonophore, carbonylcyanide-m-chlorophenylhydrazone. The enzyme content in the periplasm also decreases, while the amount of the enzyme bound to the spheroplasts increases. This effect is enhanced with a rise in the protonophore concentration. An electron cytochemical analysis showed that in the presence of the protonophore, alkaline phosphatase is partly localized in the cytoplasm and on the inner surface of the cytoplasmic membrane, which is unobserved in control cells. It was assumed that carbonylcyanide-m-chlorophenylhydrazone suppresses the translocation of alkaline phosphatase across the cytoplasmic membrane and enzyme biosynthesis, on the whole.  相似文献   

13.
The cell envelope of a marine pseudomonad as seen in thin section by electron microscopy has the double-membrane structure typical of other gram-negative bacteria. Cells washed with a solution containing Na(+), K(+), and Mg(++) at their concentrations in the growth medium, when suspended briefly in 0.5 m sucrose, lost 13% of their hexosamine in a form nonsedimentable by centrifugation at 73,000 x g. Since the resulting cells in thin section appeared unchanged, it was concluded that the material released was derived from a nonstaining, loosely bound outer layer. This same layer could be removed from the cells by washing with 0.5 m NaCl. A second nonsedimentable fraction was released after successive suspension of the cells in 0.5 m sucrose. Since this material was released only when the outer double-track structure had broken, it was concluded that it arose from a layer immediately underlying the latter layer. The three layers differed in their content of hexosamine and protein. None of the layers released contained muramic or diaminopimelic acid. The cell form remaining was rod shaped and appeared in thin section to be bounded only by its cytoplasmic membrane. This form contained all the muramic and diaminopimelic acid in the cell. Treatment with lysozyme released the muramic and diaminopimelic acid and converted the rod form to a protoplast, indicating that in the rod form (mureinoplast) a thin layer of peptidoglycan is located on the outside surface of the cytoplasmic membrane. Thus, five separate layers have been detected in the cell envelope of this marine pseudomonad.  相似文献   

14.
Lysozyme fails to penetrate through the outer membrane of stationary phase cells of Escherichia coli when it is simply added to suspensions of plasmolyzed cells. Lysozyme penetrates the outer membrane only when these cells are exposed to a mild osmotic shock in the presence of EDTA and lysozyme.In the presence of Mg2+, the outer membrane is stabilized sufficiently so that there is no lysozyme penetration during osmotic shock. If Mg2+ is added after an osmotic shock has been used to cause lysozyme to penetrate a destabilized outer membrane, the outer membrane is stabilized once again. In this case however, cells are converted to spheroplasts by the lysozyme which has gained access to the murein layer prior to the addition of Mg2+. Mg2+ stabilizes the outer membranes of these spheroplasts sufficiently so that they remain immune to lysis even in the absence of osmotic stabilizers such as sucrose.These results are discussed in terms of current information on the structure of the murein layer and the outer membrane.  相似文献   

15.
The intracellular localization of Pseudomonas aeruginosa lectins   总被引:1,自引:0,他引:1  
The localization of the Pseudomonas aeruginosa lectins (PA-I and PA-II) was studied using methods of osmotic shock, freezing and thawing and spheroplast formation. Very slight release of the two lectins occurred when P. aeruginosa was exposed to magnesium-osmotic shock or was frozen and thawed. Under these conditions, release of the periplasmic 5'-nucleotidase occurred, whereas no release of cytoplasmic glucose-6-phosphate dehydrogenase activity was detected. Formation of spheroplasts from P. aeruginosa by gradual removal of the bacterial envelopes revealed low lectin activity in the treatment fluids. Osmotic shock treatment of the lysozyme treated mureinoplasts resulted in low release of glucose-6-phosphate dehydrogenase and the two lectins (10-13%) and a considerable activity (38.4%) of 5'-nucleotidase. The presence of the lectins on the outer and the cytoplasmic membranes enabled intact cells and spheroplasts of P. aeruginosa to agglutinate papain-treated human erythrocytes. These results indicate that the two lectins are located mainly in the cytoplasm with small fractions on the cytoplasmic and outer membranes and in the periplasmic space.  相似文献   

16.
Myxococcus coralloides produces two different phosphatases, one acid and the other alkaline. Both enzymes were localized by physical and biochemical techniques. Spheroplasts from M. coralloides released 20–30% of the phosphatase activities. Osmotic shock or treatment with high MgCl2 or LiCl concentrations did not produce a greater release. Cytochemical localization situated the phosphatases in the outer membrane and the periplasmic space. Separation of the cytoplasmic membrane and outer membrane of the cells by sucrose gradient centrifugation showed that phosphatases are located primarily in the outer membrane. membrane.  相似文献   

17.
The chaperone DnaK can be released (up to 40%) by osmotic shock, a procedure which is known to release the periplasmic proteins and a select group of cytoplasmic proteins (including thioredoxin and elongation factor Tu) possibly associated with the inner face of the inner membrane. As distinct from periplasmic proteins, DnaK is retained within spheroplasts prepared with lysozyme and EDTA. The ability to isolate DnaK with a membrane fraction prepared under gentle lysis conditions supports a peripheral association between DnaK and the cytoplasmic membrane. Furthermore, heat shock transiently increases the localization of DnaK in the osmotic-shock-sensitive compartment of the cytoplasm. We conclude that DnaK belongs to the select group of cytoplasmic proteins released by osmotic shock, which are possibly located at Bayer adhesion sites, where the inner and outer membranes are contiguous.  相似文献   

18.
A strain of Saccharomyces cerevisiae which produced elongated cells under our growth conditions was investigated. By digestion of the cell walls with snail enzyme, the cells became spheroplasts after a transient state which we termed "prospheroplast." The prospheroplast could be lysed like the spheroplast, but it retained the shape of the original yeast cell if osmotically protected. Prospheroplasts and spheroplasts were prepared, and thin sections of samples taken throughout the process of wall removal were studied in the electron microscope, at regular intervals up to the time of complete conversion to spheroplasts. In addition, cell wall remnants recovered from spheroplast preparations were shadow cast for electron microscopy. This material revealed structures resembling bud scars with attached membranous matter. The kinetic studies showed that after a certain period of time all cells were transformed into prospheroplasts, whereas spheroplast formation started later, depending on the enzyme concentration. In sections, the prospheroplasts appeared to be formed by detachment of the cell walls. Both the prospheroplasts and the spheroplasts showed asymmetric cytoplasmic membranes in which the outer leaflets appeared coated with a dense fibrillar layer. The experiments suggest that, after enzyme digestion, the cytoplasmic membrane retains a coating which is rigid in the prospheroplast but which loses rigidity when the cell is transformed into a spheroplast.  相似文献   

19.
Oat (Avena sativa L.) aleurone layer cells (spheroplasts) were isolated by maceration of the aleurone layer with a mixture of commercially available cellulase and pectinase. About 20% of the cells present in intact layers were released as spheroplasts and 79 +/- 9% of the spheroplast population was viable as judged by methylene blue staining. The spheroplasts became disorganized in solutions containing less than 0.4 md-mannitol. When the spheroplasts were incubated for 48 hours, total activities of acid p-nitrophenyl phosphatase and acid proteinase increased and protein levels decreased. These changes were not effected by gibberellin A(3). Isolated aleurone layers incubated under the same conditions as the spheroplasts showed reduced responses to gibberellin A(3). It is concluded that the necessary presence of an osmoticum limits the value of spheroplasts as a system for studying the mechanism of action of gibberellin A(3) in the aleurone cell.  相似文献   

20.
The effects on the stringent control of ribosomal ribonculeic acid synthesis of the removal of cell wall, cold-shock treatment of cells, LiCl treatment of toluene-treated cells, and hypotonic treatment of spheroplasts were examined using Escherichia coli rel+ cells. Neither the removal of cell wall with penicillin or lysozyme nor the cold-shock treatment of the cells had an effect on the stringent control. The control mechanism, however, disappeared after the LiCl treatment of the toluene-treated cells, with the release of some protein component(s), possibly from the cytoplasmic membrane. The hypotonic and other treatments of spheroplasts, which disrupt the cytoplasmic membrane, also led to the abolishment of the control mechanism. These results suggested that the operation of the stringent control of ribosomal ribonucleic acid synthesis requires the cytoplasmic membrane, in which some proteins labile with LiCl treatment are embedded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号