首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Is object search mediated by object-based or image-based representations?   总被引:1,自引:0,他引:1  
Newell FN  Brown V  Findlay JM 《Spatial Vision》2004,17(4-5):511-541
Recent research suggests that visually specific memory representations for previously fixated objects are maintained during scene perception. Here we investigate the degree of visual specificity by asking whether the memory representations are image-based or object-based. To that end we measured the effects of object orientation on the time to search for a familiar object from amongst a set of 7 familiar distractors arranged in a circular array. Search times were found to depend on the relative orientations of the target object and the probe object for both familiar and novel objects. This effect was found to be partly an image matching effect but there was also an advantage shown for the object's canonical view for familiar objects. Orientation effects were maintained even when the target object was specified as having unique or similar shape properties relative to the distractors. Participants' eye movements were monitored during two of the experiments. Eye movement patterns revealed selection for object shape and object orientation during the search process. Our findings provide evidence for object representations during search that are detailed and share image-based characteristics with more high-level characteristics from object memory.  相似文献   

2.
Eye movements modulate visual receptive fields of V4 neurons   总被引:11,自引:0,他引:11  
The receptive field, defined as the spatiotemporal selectivity of neurons to sensory stimuli, is central to our understanding of the neuronal mechanisms of perception. However, despite the fact that eye movements are critical during normal vision, the influence of eye movements on the structure of receptive fields has never been characterized. Here, we map the receptive fields of macaque area V4 neurons during saccadic eye movements and find that receptive fields are remarkably dynamic. Specifically, before the initiation of a saccadic eye movement, receptive fields shrink and shift towards the saccade target. These spatiotemporal dynamics may enhance information processing of relevant stimuli during the scanning of a visual scene, thereby assisting the selection of saccade targets and accelerating the analysis of the visual scene during free viewing.  相似文献   

3.
The human horizontal eye movement system produces quick, precise, conjugate eye movements called saccades. These are important in normal vision. For example, reading tasks exclusively utilize saccadic eye movements. The majority of saccades have dynamic overshoot. The amplitude of this overshoot is independent of saccadic amplitude, and is such that it places the image of the stimulus within the retinal region of maximum acuity within a minimum of time. A computer based model of the saccadic mechanisms was used to study the origin of this overshoot. It was discussed that dynamic overshoot cannot be attributed to biomechanism properites of the eye movement mechanism, but must instead be explained by variations in the controlling nervous activity. The form of this neural controller signal is very similar to that required for a time optimal response of an inertial system.  相似文献   

4.
The interest in saccadic IOR is funneled by the hypothesis that it serves a clear functional purpose in the selection of fixation points: the facilitation of foraging. In this study, we arrive at a different interpretation of saccadic IOR. First, we find that return saccades are performed much more often than expected from the statistical properties of saccades and saccade pairs. Second, we find that fixation durations before a saccade are modulated by the relative angle of the saccade, but return saccades show no sign of an additional temporal inhibition. Thus, we do not find temporal saccadic inhibition of return. Interestingly, we find that return locations are more salient, according to empirically measured saliency (locations that are fixated by many observers) as well as stimulus dependent saliency (defined by image features), than regular fixation locations. These results and the finding that return saccades increase the match of individual trajectories with a grand total priority map evidences the return saccades being part of a fixation selection strategy that trades off exploration and exploitation.  相似文献   

5.
1. Voluntary saccadic eye movements were made toward flashes of light on the horizontal meridian, whose duration and distance from the point of fixation were varied; eye movements were measured using d.c.-electrooculography.—2. Targets within 10°–15° eccentricity are usually reached by one saccadic eye movement. When the eyes turn toward targets of more than 10°–15° eccentricity, the first saccadic eye movement falls short of the target by an angle usually not exceeding 10°. The presence of the image of the target off the fovea (visual error signal) subsequent to such an undershoot elicits, after a short interval, corrective saccades (usually one) which place the image of the target on the fovea. In the absence of a visual error signal, the probability of occurrence of corrective saccades is low, but it increases with greater target eccentricities. These observations suggest that there are different, eccentricity-dependent modes of programming saccadic eye movements.—3. Saccadic eye movements appear to be programmed in retinal coordinates. This conclusion is based on the observations that, irrespective of the initial position of the eyes in the orbit, a) there are different programming modes for eye movements to targets within and beyond 10°–15° from the fixation point, and b_ the maximum velocity of saccadic eye movements is always reached at 25° to 30° target eccentricity. —4. Distributions of latency and intersaccadic interval (ISI) are frequently multimodal, with a separation between modes of 30 to 40 msec. These observations suggest that saccadic eye movements are produced by mechanisms which, at a frequency of 30 Hz, process visual information. —5. Corrective saccades may occur after extremely short intervals (30 to 60 msec) regardless of whether or not a visual error signal is present; the eyes may not even come to a complete stop during these very short intersaccadic intervals. It is suggested that these corrective saccades are triggered by errors in the programming of the initial saccadic eye movements, and not by a visual error signal. —6. The exitence of different, eccentricity-dependent programming modes of saccadic eye movements, is further supported by anatomical, physiological, psychophysical, and neuropathological observations that suggest a dissociation of visual functions dependent on retinal eccentricity. Saccadic eye movements to targets more eccentric than 10°–15° appear to be executed by a mechanism involving the superior colliculus (perhaps independent of the visual cortex), whereas saccadic eye movements to less eccentric targets appear to depend on a mechanism involving the geniculo-cortical pathway (perhaps in collaboration with the superior colliculus).  相似文献   

6.
7.
Within the range of images that we might categorize as a “beach”, for example, some will be more representative of that category than others. Here we first confirmed that humans could categorize “good” exemplars better than “bad” exemplars of six scene categories and then explored whether brain regions previously implicated in natural scene categorization showed a similar sensitivity to how well an image exemplifies a category. In a behavioral experiment participants were more accurate and faster at categorizing good than bad exemplars of natural scenes. In an fMRI experiment participants passively viewed blocks of good or bad exemplars from the same six categories. A multi-voxel pattern classifier trained to discriminate among category blocks showed higher decoding accuracy for good than bad exemplars in the PPA, RSC and V1. This difference in decoding accuracy cannot be explained by differences in overall BOLD signal, as average BOLD activity was either equivalent or higher for bad than good scenes in these areas. These results provide further evidence that V1, RSC and the PPA not only contain information relevant for natural scene categorization, but their activity patterns mirror the fundamentally graded nature of human categories. Analysis of the image statistics of our good and bad exemplars shows that variability in low-level features and image structure is higher among bad than good exemplars. A simulation of our neuroimaging experiment suggests that such a difference in variance could account for the observed differences in decoding accuracy. These results are consistent with both low-level models of scene categorization and models that build categories around a prototype.  相似文献   

8.
When judging the lightness of objects, the visual system has to take into account many factors such as shading, scene geometry, occlusions or transparency. The problem then is to estimate global lightness based on a number of local samples that differ in luminance. Here, we show that eye fixations play a prominent role in this selection process. We explored a special case of transparency for which the visual system separates surface reflectance from interfering conditions to generate a layered image representation. Eye movements were recorded while the observers matched the lightness of the layered stimulus. We found that observers did focus their fixations on the target layer, and this sampling strategy affected their lightness perception. The effect of image segmentation on perceived lightness was highly correlated with the fixation strategy and was strongly affected when we manipulated it using a gaze-contingent display. Finally, we disrupted the segmentation process showing that it causally drives the selection strategy. Selection through eye fixations can so serve as a simple heuristic to estimate the target reflectance.  相似文献   

9.
The processes underlying object recognition are fundamental for the understanding of visual perception. Humans can recognize many objects rapidly even in complex scenes, a task that still presents major challenges for computer vision systems. A common experimental demonstration of this ability is the rapid animal detection protocol, where human participants earliest responses to report the presence/absence of animals in natural scenes are observed at 250–270 ms latencies. One of the hypotheses to account for such speed is that people would not actually recognize an animal per se, but rather base their decision on global scene statistics. These global statistics (also referred to as spatial envelope or gist) have been shown to be computationally easy to process and could thus be used as a proxy for coarse object recognition. Here, using a saccadic choice task, which allows us to investigate a previously inaccessible temporal window of visual processing, we showed that animal – but not vehicle – detection clearly precedes scene categorization. This asynchrony is in addition validated by a late contextual modulation of animal detection, starting simultaneously with the availability of scene category. Interestingly, the advantage for animal over scene categorization is in opposition to the results of simulations using standard computational models. Taken together, these results challenge the idea that rapid animal detection might be based on early access of global scene statistics, and rather suggests a process based on the extraction of specific local complex features that might be hardwired in the visual system.  相似文献   

10.
The motor functions of the eye comprise a composite group of micro- and macro-movements, including pupil reactions; accommodation reactions; movements of convergence and divergence of the visual axes; eye "tremors"; slow, even deflections of the eye (drift); minute saccadic movements; large jumps; tracking movements fixed on a moving object; and fixation on a motionless object, which can be regarded as a particular type of eye movement.  相似文献   

11.
Among the various possible criteria guiding eye movement selection, we investigate the role of position uncertainty in the peripheral visual field. In particular, we suggest that, in everyday life situations of object tracking, eye movement selection probably includes a principle of reduction of uncertainty. To evaluate this hypothesis, we confront the movement predictions of computational models with human results from a psychophysical task. This task is a freely moving eye version of the multiple object tracking task, where the eye movements may be used to compensate for low peripheral resolution. We design several Bayesian models of eye movement selection with increasing complexity, whose layered structures are inspired by the neurobiology of the brain areas implied in this process. Finally, we compare the relative performances of these models with regard to the prediction of the recorded human movements, and show the advantage of taking explicitly into account uncertainty for the prediction of eye movements.  相似文献   

12.
The perception of visual information in cytoscreening was studied: eye movements were recorded while the cytotechnologist was screening cervical smears by means of a projection screen. Four phases of eye movement could be distinguished: small, aimless movements during the stage movement; a latency period with a duration of about 180 milliseconds; saccadic movement to the position of an object; and fixation on an object. These components explain the two-phase behavior of cytoscreening found in our previous investigations of the stage movement. Visual perception during the period of latency was found to be the most important since only those objects that are recognized by peripheral vision during this period can trigger the necessary saccadic movement before fixation takes place. The scanpath of search in the stationary field of view is determined by the conspicuousness of the objects; the main features of conspicuousness are size and contrast. Even with the comparatively small fields of view (24 degrees and 29 degrees in diameter) used in these experiments, it was found that the detection threshold of peripheral vision increases towards the margin of the field of view. This raises the question of whether the use of large-field binoculars (with 40-degree visual angles) may cause higher false-negative rates for samples with only a few atypical cells.  相似文献   

13.
Summary A discussion is given of considerations involved in forming a frequency spectrum of a signal such as human fixation eye movements, in which an impulsive signal (saccadic movements) and a noise-like signal (tremor movements) are present together. A method is outlined which enables the spectrum of each component to be determined. Results are presented of human eye movement frequency spectra and it is shown that the tremor movements alone are adequate to prevent the fading of vision under conditions of retinal image stabilisation.An interpretation of the observed frequency spectra is given in terms of a model, which assumes that the dynamics of the eye muscle system are linear and that the active state input producing tremor has a flat frequency spectrum. From this it is deduced that the eye behaves as an overdamped second order system with time constants of 0.002 and 0.02 seconds. The active state input involved in production of an involuntary saccade is shown to consist of an impulse function with exponential rise and decay.  相似文献   

14.
A single glance at your crowded desk is enough to locate your favorite cup. But finding an unfamiliar object requires more effort. This superiority in recognition performance for learned objects has at least two possible sources. For familiar objects observers might: 1) select more informative image locations upon which to fixate their eyes, or 2) extract more information from a given eye fixation. To test these possibilities, we had observers localize fragmented objects embedded in dense displays of random contour fragments. Eight participants searched for objects in 600 images while their eye movements were recorded in three daily sessions. Performance improved as subjects trained with the objects: The number of fixations required to find an object decreased by 64% across the 3 sessions. An ideal observer model that included measures of fragment confusability was used to calculate the information available from a single fixation. Comparing human performance to the model suggested that across sessions information extraction at each eye fixation increased markedly, by an amount roughly equal to the extra information that would be extracted following a 100% increase in functional field of view. Selection of fixation locations, on the other hand, did not improve with practice.  相似文献   

15.
Explanations for the effects of the rapid eye movements induced during Eye Movement Desensitization Reprocessing (EMDR; Shapiro, 2001) have drawn upon an analogy with the eye movements of REM sleep (Kuiken, Bears, Miall, and Smith, 2002). An extension of that analogy posits two orienting systems, one involving threat-fear related mnemonic contextualization and another involving loss-pain related monitoring of conflicting response alternatives. In a study involving individuals who had recently experienced significant loss or trauma, we found that experimentally induced saccadic eye movements decreased reaction times to unexpected stimuli among those reporting traumatic distress (characterized by hyperarousal and intrusive thoughts) and increased reaction times among those reporting separation distress (characterized by vivid reminiscences and the sense of a foreshortened future). Also, we found that saccadic eye movements increased the perceived strikingness of metaphoric sentence endings among those reporting amnesia for events related to either loss or trauma. The eye movements of both EMDR and REM sleep may differently affect the attentional and cognitive reorienting activity of those living with the consequences of loss or trauma. These differences may be evident in their waking reflections and in their dreams. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Eye movements constitute one of the most basic means of interacting with our environment, allowing to orient to, localize and scrutinize the variety of potentially interesting objects that surround us. In this review we discuss the role of the parietal cortex in the control of saccadic and smooth pursuit eye movements, whose purpose is to rapidly displace the line of gaze and to maintain a moving object on the central retina, respectively. From single cell recording studies in monkey we know that distinct sub-regions of the parietal lobe are implicated in these two kinds of movement. The middle temporal (MT) and medial superior temporal (MST) areas show neuronal activities related to moving visual stimuli and to ocular pursuit. The lateral intraparietal (LIP) area exhibits visual and saccadic neuronal responses. Electrophysiology, which in essence is a correlation method, cannot entirely solve the question of the functional implication of these areas: are they primarily involved in sensory processing, in motor processing, or in some intermediate function? Lesion approaches (reversible or permanent) in the monkey can provide important information in this respect. Lesions of MT or MST produce deficits in the perception of visual motion, which would argue for their possible role in sensory guidance of ocular pursuit rather than in directing motor commands to the eye muscle. Lesions of LIP do not produce specific visual impairments and cause only subtle saccadic deficits. However, recent results have shown the presence of severe deficits in spatial attention tasks. LIP could thus be implicated in the selection of relevant objects in the visual scene and provide a signal for directing the eyes toward these objects. Functional imaging studies in humans confirm the role of the parietal cortex in pursuit, saccadic, and attentional networks, and show a high degree of overlap with monkey data. Parietal lobe lesions in humans also result in behavioral deficits very similar to those that are observed in the monkey. Altogether, these different sources of data consistently point to the involvement of the parietal cortex in the representation of space, at an intermediate stage between vision and action.  相似文献   

17.
The present report considers goal directed human saccadic eye movements. It addresses the question how a given perceived target excentricity is transformed into the innervation pattern that creates the saccade to the target. More specifically, it investigates whether this pattern is an appropriately selected preprogram or whether it is continuously controlled by a local feedback loop that compares a non-visual eye position signal to the perceived target excentricity (a visual signal would be too slow). To this end, the relation between the accuracy of saccades aimed at a given target and their velocity and duration was examined. Duration and velocity were found to vary by as much as 60% while the amplitude showed no related variation and had an almost constant accuracy of about 90%. By administrating diazepam, the variability of saccade duration and velocity could be further increased, but still the amplitude remained almost constant. These results favour the hypothesis that saccadic innervation is controlled by a local feedback loop.This investigation was supported by Deutsche Forschungsgemeinschaft, SFB 70, Gruppe Ulm  相似文献   

18.
It has been well known that the canal driven vestibulo-ocular reflex (VOR) is controlled and modulated through the central nervous system by external sensory information (e.g. visual, otolithic and somatosensory inputs) and by mental conditions. Because the origin of retinal image motion exists both in the subjects (eye, head and body motions) and in the external world (object motion), the head motion should be canceled and/or the object should be followed by smooth eye movements. Human has developed a lot of central nervous mechanisms for smooth eye movements (e.g. VOR, optokinetic reflex and smooth pursuit eye movements). These mechanisms are thought to work for the purpose of better seeing. Distinct mechanism will work in appropriate self motion and/or object motion. As the results, whole mechanisms are controlled in a purpose-directed manner. This can be achieved by a self-organizing holistic system. Holistic system is very useful for understanding human oculomotor behavior.  相似文献   

19.
Our ability to interact with the environment hinges on creating a stable visual world despite the continuous changes in retinal input. To achieve visual stability, the brain must distinguish the retinal image shifts caused by eye movements and shifts due to movements of the visual scene. This process appears not to be flawless: during saccades, we often fail to detect whether visual objects remain stable or move, which is called saccadic suppression of displacement (SSD). How does the brain evaluate the memorized information of the presaccadic scene and the actual visual feedback of the postsaccadic visual scene in the computations for visual stability? Using a SSD task, we test how participants localize the presaccadic position of the fixation target, the saccade target or a peripheral non-foveated target that was displaced parallel or orthogonal during a horizontal saccade, and subsequently viewed for three different durations. Results showed different localization errors of the three targets, depending on the viewing time of the postsaccadic stimulus and its spatial separation from the presaccadic location. We modeled the data through a Bayesian causal inference mechanism, in which at the trial level an optimal mixing of two possible strategies, integration vs. separation of the presaccadic memory and the postsaccadic sensory signals, is applied. Fits of this model generally outperformed other plausible decision strategies for producing SSD. Our findings suggest that humans exploit a Bayesian inference process with two causal structures to mediate visual stability.  相似文献   

20.
Alkan Y  Biswal BB  Alvarez TL 《PloS one》2011,6(11):e25866

Purpose

Eye movement research has traditionally studied solely saccade and/or vergence eye movements by isolating these systems within a laboratory setting. While the neural correlates of saccadic eye movements are established, few studies have quantified the functional activity of vergence eye movements using fMRI. This study mapped the neural substrates of vergence eye movements and compared them to saccades to elucidate the spatial commonality and differentiation between these systems.

Methodology

The stimulus was presented in a block design where the ‘off’ stimulus was a sustained fixation and the ‘on’ stimulus was random vergence or saccadic eye movements. Data were collected with a 3T scanner. A general linear model (GLM) was used in conjunction with cluster size to determine significantly active regions. A paired t-test of the GLM beta weight coefficients was computed between the saccade and vergence functional activities to test the hypothesis that vergence and saccadic stimulation would have spatial differentiation in addition to shared neural substrates.

Results

Segregated functional activation was observed within the frontal eye fields where a portion of the functional activity from the vergence task was located anterior to the saccadic functional activity (z>2.3; p<0.03). An area within the midbrain was significantly correlated with the experimental design for the vergence but not the saccade data set. Similar functional activation was observed within the following regions of interest: the supplementary eye field, dorsolateral prefrontal cortex, ventral lateral prefrontal cortex, lateral intraparietal area, cuneus, precuneus, anterior and posterior cingulates, and cerebellar vermis. The functional activity from these regions was not different between the vergence and saccade data sets assessed by analyzing the beta weights of the paired t-test (p>0.2).

Conclusion

Functional MRI can elucidate the differences between the vergence and saccade neural substrates within the frontal eye fields and midbrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号