首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of transamination and decarboxylation of [1-14C]leucine at a physiological concentration (0.1 mM) were measured in the perfused rat heart. In hearts from fasted rats, metabolic flux through the branched-chain 2-oxo acid dehydrogenase reaction was low initially, but increased gradually during the perfusion period. The increase in 14CO2 production was accompanied by an increase in the amount of active branched-chain 2-oxo acid dehydrogenase complex present in the tissue. In hearts from rats fed ad libitum, extractable branched-chain dehydrogenase activity was low initially, but increased rapidly during perfusion, and high rates of decarboxylation were attained within the first 10 min. Infusion of glucagon, adrenaline, isoprenaline, or adrenaline in the presence of phentolamine all produced rapid, transient, inhibition (40-50%) of the formation of 4-methyl-2-oxo[1-14C]pentanoate and 14CO2 within 1-2 min, but the specific radioactivity of 4-methyl-2-oxo[14C]pentanoate released into the perfusate remained constant. Glucagon and adrenaline infusion also resulted in transient decreases (16-24%) in the amount of active branched-chain 2-oxo acid dehydrogenase. In hearts from fasted animals, infusion for 10 min of adrenaline, phenylephrine, or adrenaline in the presence of propranolol, but not infusion of glucagon or isoprenaline, stimulated the rate of 14CO2 production 3-fold, and increased 2-fold the extractable branched-chain 2-oxo acid dehydrogenase activity. These results demonstrate that stimulation of glucagon or beta-adrenergic receptors in the perfused rat heart causes a transient inhibition of branched-chain amino acid metabolism, whereas alpha-adrenergic stimulation causes a slower, more sustained, enhancement of branched-chain amino acid metabolism. Both effects reflect interconversion of the branched-chain 2-oxo acid dehydrogenase complex between active and inactive forms. Also, these studies suggest that the concentration of branched-chain 2-oxo acid available for decarboxylation can be regulated by adrenaline and glucagon.  相似文献   

2.
1. A branched-chain 2-oxo acid dehydrogenase was partially purified from ox liver mitochondria. 2. The preparation oxidized 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutyrate and D- and L-3-methyl-2-oxopentanoate. The apparent Km values for the oxo acids and for thiamin pyrophosphate, CoA, NAD+ and Mg2+ were determined. 3. The oxidation of each oxo acid was inhibited by isovaleryl (3-methylbutyryl)-CoA (competitive with CoA) and by NADH (competitive with NAD+); Ki values were determined. 4. The preparation showed substrate inhibition with each 2-oxo acid. The oxidative decarboxylation of 4-methyl-2-oxo[1-14C]pentanoate was inhibited by 3-methyl-2-oxobutyrate and DL-3-methyl-2-oxopentanoate, but not by pyruvate. The Vmax. with 3-methyl-2-oxobutyrate as variable substrate was not increased by the presence of each of the other 2-oxo acids. 5. Ox heart pyruvate dehydrogenase did not oxidize these branched-chain 2-oxo acids and it was not inhibited by isovaleryl-CoA. The branched-chain 2-oxo acid dehydrogenase activity (unlike that of pyruvate dehydrogenase) was not inhibited by acetyl-CoA. 6. It is concluded that the branched-chain 2-oxo acid dehydrogenase activity is distinct from that of pyruvate dehydrogenase, and that a single complex may oxidize all three branched-chain 2-oxo acids.  相似文献   

3.
Oxidative decarboxylation of pyruvate by branched-chain 2-oxo acid dehydrogenase can result in overestimation of the expressed and total activity of hepatic pyruvate dehydrogenase. Pyruvate is a poor substrate for branched-chain 2-oxo acid dehydrogenase relative to the branched-chain oxo acids; however, the comparable total activities of the two complexes in liver, the much greater activity state of branched-chain 2-oxo acid dehydrogenase compared with pyruvate dehydrogenase in most physiological states, and the use of high pyruvate concentrations, explain the interference that can occur in conventional radiochemical or indicator-enzyme linked assays of pyruvate dehydrogenase. Goat antibody that specifically inhibited branched-chain 2-oxo acid dehydrogenase was used in this study to provide a more specific assay for pyruvate dehydrogenase.  相似文献   

4.
The activities of 2-oxo acid dehydrogenase complexes were measured during hormone-mediated differentiation of 3T3-L1 preadipocytes into adipocytes. Specific activity of leucine-activated branched-chain 2-oxo acid dehydrogenase complex increased approx. 10-fold in 3T3-L1 adipocytes compared with 3T3-L1 preadipocytes. In contrast, specific activity of the 2-oxoglutarate dehydrogenase complex increased by only 3-fold in 3T3-L1 adipocytes. The three catalytic component enzymes of the branched-chain 2-oxo acid dehydrogenase complex and the pyruvate dehydrogenase complex showed concomitant increases in their specific activities. A close similarity in kinetics of induction of the branched-chain 2-oxo acid dehydrogenase complex and the pyruvate dehydrogenase complex in 3T3-L1 adipocytes suggests that a common mechanism may be involved in hormone-dependent increases in the activities of the catalytic components of these two complexes in 3T3-L1 adipocytes during differentiation.  相似文献   

5.
Actual and total activities of the branched-chain 2-oxo acid dehydrogenase complex were determined in homogenates of quadriceps muscle, heart, liver, kidney and brain from rats of 0-70 days age. All rat tissues except quadriceps muscle showed a marked increase of total activity between 0 and 21 days, heart and kidney also after weaning. The actual activity rose after birth in liver, kidney and brain and after weaning in liver, kidney and heart. The activity state was always about 100% in liver and varied between 40-60% in kidney and brain, 10-23% in heart and 6-12% in quadriceps muscle. The actual activities measured indicate, that the degradation of branched-chain 2-oxo acids mainly takes place in the liver of the newborn, suckling and young-adult rat.  相似文献   

6.
Starvation does not change the actual activity per g of tissue of the branched-chain 2-oxo acid dehydrogenase in skeletal muscles, but affects the total activity to a different extent, depending on the muscle type. The activity state (proportion of the enzyme present in the active state) does not change in diaphragm and decreases in quadriceps muscle. Liver and kidney show an increase of both activities, without a change of the activity state. In heart and brain no changes were observed. Related to organ wet weights, the actual activity present in the whole-body muscle mass decreases on starvation, whereas the activities present in liver and kidney do not change, or increase slightly. Exercise (treadmill-running) of untrained rats for 15 and 60 min causes a small increase of the actual activity and the activity state of the branched-chain 2-oxo acid dehydrogenase complex in heart and skeletal muscle. Exercise for 1 h, furthermore, increased the actual and the total activity in liver and kidney, without a change of the activity state. In brain no changes were observed. The actual activity per g of tissue in skeletal muscle was less than 2% of that in liver and kidney, both before and after exercise and starvation. Our data indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and to a smaller extent in kidney and skeletal muscle in fed, starved and exercised rats.  相似文献   

7.
The activity of liver branched-chain 2-oxo acid dehydrogenase complex was measured in rats fed on low-protein diets and given adrenaline, glucagon, insulin or dibutyryl cyclic AMP in vivo. Administration of glucagon or adrenaline (200 micrograms/100 g body wt.) resulted in a 4-fold increase in the percentage of active complex. As with glucagon and adrenaline, treatment of rats with cyclic AMP (5 mg/100 g body wt.) resulted in marked activation of branched-chain 2-oxo acid dehydrogenase. Insulin administration (1 unit/100 g body wt.) also resulted in activation of enzyme; however, these effects were less than those observed with glucagon and adrenaline. In contrast with the results obtained with low-protein-fed rats, administration of adrenaline (200 micrograms/100 g body wt.) to rats fed with an adequate amount of protein resulted in only a modest (14%) increase in the activity of the complex. The extent to which these hormones activate branched-chain 2-oxo acid dehydrogenase appears to be correlated with their ability to stimulate amino acid uptake into liver.  相似文献   

8.
At 0.1 mM 2-oxo[1-14C]isocaproate or 2-oxo[1-14C]isovalerate plots of the reciprocal of the rate of 14CO2 formation by branched-chain 2-oxo acid dehydrogenase complex in mitochondria vs alpha-cyanocinamate concentration were linear up to high inhibitor concentrations, indicating that the monocarboxylate carrier-mediated transport was the rate-limiting step. At low (0.025 mM) concentration of 2-oxo[1-14C]isocaproate or 2-oxo[1-14C]isovalerate the 1/v vs I plots became nonlinear indicating that the branched-chain 2-oxo acid dehydrogenase activity determined the rate of 14CO2 formation. Inhibition of branched-chain 2-oxo acid dehydrogenase complex by clofibric acid or arsenite showed that at 0.1 mM 2-oxoisovalerate the activity of the complex became the rate-limiting step of the pathway. The availability of the 2-oxoisocaproate or 2-oxoisovalerate seems to affect the phosphorylation and the activity of the branched-chain 2-oxo acid dehydrogenase complex only at low, physiological concentrations of these substrates (less than 0.025 mM).  相似文献   

9.
The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.  相似文献   

10.
Hepatocytes isolated from rats fed on a chow diet or a low-protein (8%) diet were used to study the effects of various factors on flux through the branched-chain 2-oxo acid dehydrogenase complex. The activity of this complex was also determined in cell-free extracts of the hepatocytes. Hepatocytes isolated from chow-fed rats had greater flux rates (decarboxylation rates of 3-methyl-2-oxobutanoate and 4-methyl-2-oxopentanoate) than did hepatocytes isolated from rats fed on the low-protein diet. Oxidizable substrates tended to inhibit flux through the branched-chain 2-oxo acid dehydrogenase, but inhibition was greater with hepatocytes isolated from rats fed on the low-protein diet. 2-Chloro-4-methylpentanoate (inhibitor of branched-chain 2-oxo acid dehydrogenase kinase), dichloroacetate (inhibitor of both pyruvate dehydrogenase kinase and branched-chain 2-oxo acid dehydrogenase kinase) and dibutyryl cyclic AMP (inhibitor of glycolysis) were effective stimulators of branched-chain oxo acid decarboxylation with hepatocytes from rats fed on a low-protein diet, but had little effect with hepatocytes from rats fed on chow diet. Activity measurements indicated that the branched-chain 2-oxo acid dehydrogenase complex was mainly (96%) in the active (dephosphorylated) state in hepatocytes from chow-fed rats, but only partially (50%) in the active state in hepatocytes from rats fed on a low-protein diet. Oxidizable substrates markedly decreased the activity state of the enzyme in hepatocytes from rats fed on a low-protein diet, but had much less effect in hepatocytes from chow-fed rats. 2-Chloro-4-methylpentanoate and dichloroacetate increased the activity state of the enzyme in hepatocytes from rats fed on a low-protein diet, but had no effect on the activity state of the enzyme in hepatocytes from chow-fed rats. The results indicate that protein starvation greatly increases the sensitivity of the hepatic branched-chain 2-oxo acid dehydrogenase complex to regulation by covalent modification.  相似文献   

11.
1. Incubation of mitochondria from heart, liver and kidney with [32P]phosphate allowed 32P incorporation into two intramitochondrial proteins, the decarboxylase alpha-subunit of the pyruvate dehydrogenase complex (mol.wt 42000) and a protein of mol.wt. 48000. 2. This latter protein incorporated 32P more slowly than did pyruvate dehydrogenase, was not precipitated by antibody to pyruvate dehydrogenase and showed behaviour distinct from that of pyruvate dehydrogenase towards high-speed centrifugation and pyruvate dehydrogenase phosphate phosphatase. 3. 32P incorporation into the protein was greatly diminished by the presence of 0.1 mM-4-methyl-2-oxopentanoate, but enhanced by pyruvate (1 mM), hypo-osmotic treatment of mitochondria and, under some conditions, by uncoupler. 4. The activity of branched-chain 2-oxo acid dehydrogenase was assayed in parallel experiments. Under appropriate conditions the enzyme was inhibited when 32P incorporation was increased and activated when incorporation was decreased. The data suggest that the 48000-mol.wt. phosphorylated protein is identical with the decarboxylase subunit of branched-chain 2-oxo acid dehydrogenase and that this enzyme may be controlled by a phosphorylation-dephosphorylation cycle akin to that for pyruvate dehydrogenase. 5. Strict correlation between activity and 32P incorporation was not observed, and a scheme for the regulation of the enzyme is proposed to account for these discrepancies.  相似文献   

12.
Metabolism of branched-chain amino and 2-oxo acids was studied in the isolated perfused kidney. Significant amounts of 2-oxo acids were released by perfused kidney with all concentrations of amino acids tested (0.1-1.0 mM each), despite the high activity of branched-chain 2-oxo acid dehydrogenase in kidney. As perfusate valine concentration was increased from 0.2 to 1.0 mM, [1-14C]valine transamination (2-oxo acid oxidized + released) increased roughly linearly; [1-14C]valine oxidation, however, increased exponentially. Increasing perfusate concentration of 3-methyl-2-oxo[1-14C]butanoate from 0 to 1.0 mM resulted in a linear increase in the rate of its oxidation and a rise in perfusate valine concentration; at the same time significant decreases occurred in perfusate isoleucine and leucine concentrations, with corresponding increases in rates of release of their respective 2-oxo acids. Comparison of rates of oxidation of [1-14C]valine and 3-methyl-2-oxo[1-14C]butanoate suggests that 2-oxo acid arising from [1-14C]valine transamination has freer access to the 2-oxo acid dehydrogenase than has the 2-oxo acid from the perfusate. The observations indicate that, when branched-chain amino and 2-oxo acids are present in perfusate at near-physiological concentrations, rates of transamination of the amino and 2-oxo acids by isolated perfused kidney are greater than rates of oxidation.  相似文献   

13.
Isolated adipocytes from rat epididymal fat-pads were incubated with [32P]Pi, and intracellular phosphoproteins were then analysed by SDS/polyacrylamide-gel electrophoresis and autoradiography. A phosphorylated polypeptide of apparent Mr 46,000 was identified as the alpha-subunit of branched-chain 2-oxo acid dehydrogenase complex by immunoprecipitation using antiserum raised against the homogeneous E1 component of branched-chain 2-oxo acid dehydrogenase complex. Immunoprecipitation of this phosphoprotein is blocked in a competitive manner by purified branched-chain 2-oxo acid dehydrogenase complex. Peptide mapping of the isolated phosphoprotein indicates that two sites on the polypeptide are phosphorylated in the intact cells. Addition of branched-chain 2-oxo acids to the incubation medium causes diminution in the extent of labelling of both phosphorylation sites on the alpha-subunit, an effect presumably mediated via their known inhibitory action on branched-chain 2-oxo acid dehydrogenase kinase. These observations provide direct evidence for phosphorylation of branched-chain 2-oxo acid dehydrogenase complex in intact cells.  相似文献   

14.
1. Comparisons of the activity and kinetics of the branched-chain 2-oxo acid dehydrogenase in cultured skin fibroblasts from normal and classical maple-syrup-urine-disease (MSUD) subjects provide a kinetic explanation for the enzyme defect. 2. In the intact cell assays, normal fibroblasts demonstrated hyperbolic kinetics with 3-methyl-2-oxo[1-14C]butyrate as a substrate. Intact fibroblasts from four classical MSUD patients showed no decarboxylation over a substrate concentration range of 0.25 to 5.0 mM, and thiamin (4 mM) was without effect. 3. The overall reaction of the multienzyme complex was efficiently reconstituted by using a disrupted-cell system. Normals again showed typical hyperbolic kinetics at the 2-oxo acid concentrations of 0.1 to 5 mM. The Vmax. and apparent Km values were 0.10 +/- 0.02 m-unit/mg of protein and 0.05-0.1 mM respectively, with 3-methyl-2-oxobutyrate. In contrast, classical MSUD patients exhibited sigmoidal kinetics (Hill coefficient, 2.5) with activity approaching 40-60% of the normal value at 5 mM substrate. The K0.5 values from the Hill plots for MSUD patients were 4-7 mM. 4. The E1 (branched-chain 2-oxo acid decarboxylase) component of the multienzyme complex was measured in disrupted-particulate preparations. Normals again showed hyperbolic kinetics with the 2-oxo acid, whereas MSUD preparations exhibited sigmoidal kinetics with the activity of E1 strictly dependent on substrate concentration. Apparent Km or K0.5 were 0.1 and 1.0 mM for normal and MSUD subjects respectively. 5. Measurements of E2 (dihydrolipoyl transacylase) and E3 (dihydrolipoyl dehydrogenase) in MSUD preparations showed them to be in the normal range. 6. The above data suggest a defect in the E1 step of branched-chain 2-oxo acid dehydrogenase in classical MSUD patients.  相似文献   

15.
1. The effect of the branched-chain amino acids, namely leucine, isoleucine and valine and their corresponding 2-oxo acids on the metabolism of 2-oxoglutarate by developing rat and human brain preparations was investigated. 2. The decarboxylation of 2-oxo[1-(14)C]glutarate to (14)CO(2) by mitochondria from adult rat brain was inhibited by the branched-chain 2-oxo acids whereas the branched-chain amino acids had no inhibitory effect on this process. 3. The activity of 2-oxoglutarate dehydrogenase complex was about 0.2unit/g of brain from 2-day-old rats and increased by about fourfold reaching an adult value by the end of the third postnatal week. 4. The K(m) value for 2-oxoglutarate of the 2-oxoglutarate dehydrogenase complex in rat and human brain was 100 and 83mum respectively. 5. The branched-chain 2-oxo acids competitively inhibited this enzyme from suckling and adult rats brains as well as from foetal and adult human brains, whereas the branched-chain amino acids had no effect on this enzyme. 6. Approximate K(i) values for the branched-chain 2-oxo acids found for this enzyme were in the range found for these 2-oxo acids in plasma from patients with maple-syrup-urine disease. 7. The possible significance of the inhibition by the branched-chain 2-oxo acids of the 2-oxoglutarate dehydrogenase complex in brains of untreated patients with maple-syrup-urine disease is discussed in relation to the energy metabolism and the biosynthesis of lipids from ketone bodies.  相似文献   

16.
Actual and total branched-chain 2-oxo acid dehydrogenase activities were determined in homogenates of incubated diaphragms from fed and starved rats. Incubation in Krebs-Ringer buffer increased the activity state, but caused considerable loss of total activity. Palmitate oxidation rates and citrate synthase activities did not significantly change on incubation. Starved muscles showed a higher extent of activation after 15 min of incubation (not after 30 and 60 min) and a smaller loss of total activity. Experiments with the transaminase inhibitor amino-oxyacetate confirm that the contribution of endogenous amino acids to the oxidation precursor pool is also smaller in diaphragms from starved rats on incubation in vitro. These phenomena together cause the higher 14CO2 production from 14C-labelled branched-chain amino acids and 2-oxo acids in muscles from starved than from fed rats. High concentrations of branched-chain 2-oxo acids, and the presence of 2-chloro-4-methyl-pentanoate, octanoate or ketone bodies, increase the extent of activation of the dehydrogenase complex; glucose and pyruvate had no effect. The observed changes of the activity state by these metabolites are discussed in relation to their interaction with branched-chain 2-oxo acid oxidation in incubated hemidiaphragms.  相似文献   

17.
Calpain inhibition by peptide epoxides.   总被引:8,自引:4,他引:4       下载免费PDF全文
The protein activator of phosphorylated branched-chain 2-oxo acid dehydrogenase complex was purified greater than 1000-fold from extracts of rat liver mitochondria; the specific activity was greater than 1000 units/mg of protein (1 unit gives half-maximum re-activation of 10 munits of phosphorylated complex). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave two bands (Mr 47700 and 35300) indistinguishable from the alpha- and beta-subunits of the branched-chain dehydrogenase component of the complex. On gel filtration (Sephacryl S-300), apparent Mr was 190000. This and other evidence suggests that activator protein is free branched-chain dehydrogenase; this conclusion is provisional until identical amino acid composition of the subunits has been demonstrated. Activator protein (i.e. free branched-chain dehydrogenase) was inhibited (up to 30%) by NaF, whereas branched-chain complex was not inhibited. There was no convincing evidence for interconvertible active and inactive forms of activator protein in rat liver mitochondria. Activator protein was detected in mitochondria from liver (ox, rabbit and rat) and kidney (ox and rat), but not in rat heart or skeletal-muscle mitochondria. In rat liver mitochondrial extracts, branched-chain complex sedimented with the mitochondrial membranes, whereas activator protein remained in the supernatant. Activator protein re-activated phosphorylated (inactive) particulate complex from rat liver mitochondria, but it did not activate dephosphorylated complex. Liver and kidney, but not muscle, mitochondria apparently contain surplus free branched-chain dehydrogenase, which is bound by the complex with lower affinity than is the branched-chain dehydrogenase intrinsic to the complex. It is suggested that this functions as a buffering mechanism to maintain branched-chain complex activity in liver and kidney mitochondria.  相似文献   

18.
An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.  相似文献   

19.
After incubation of muscle preparations with [U-14C]branched-chain amino acids or 2-oxo acids, radioactive metabolites were separated, identified and quantified. Homogenates of rat heart and skeletal muscle incubated with 4-methyl-2-oxopentanoate accumulated isovalerate, 3-hydroxyisovalerate and the corresponding carnitine esters. Incubation with 3-methyl-2-oxobutanoate resulted in the production of isobutyrate, 3-hydroxyisobutyrate and their carnitine esters. Addition of L-carnitine increased the production of the esters. The enzymes 3-methylcrotonyl-CoA carboxylase and 3-hydroxyisobutyric acid dehydrogenase apparently are inactive during incubation of muscle homogenates. With liver homogenates the degradation of both 2-oxo acids was more complete. Rat hemidiaphragms incubated with leucine, valine and isoleucine accumulated the corresponding branched-chain 2-oxo acids, fatty acids and hydroxylated fatty acids. The degradation of valine was markedly limited by the release of these metabolites. Considerable amounts (relatively smaller for valine) of radioactivity were also recovered in CO2 and glutamine and glutamate. Incubations with branched-chain 2-oxo acids gave the same radioactive products, except for glutamine and glutamate. Radioactivity was never found in lactate, pyruvate or alanine. These data indicate that the carbon-chains of amino acids entering the citric acid cycle in muscle, are not used for oxidation or for alanine synthesis, but are converted exclusively to glutamine.  相似文献   

20.
The potential for branched-chain 2-oxo acid dehydrogenase complex (BCOADC) activity to be controlled by feedback inhibition was investigated by calculating the Elasticity Coefficients for several feedback inhibitors. We suggest that feedback inhibition is a quantitatively important regulatory mechanism by which branched-chain 2-oxo acid dehydrogenase activity is regulated. The potential for control of enzyme activity is greater for NADH than for the acyl-CoA products, and suggests that factors that alter the redox potential may physiologically regulate BCOADC activity through a feedback inhibitory mechanism in vivo. Local pH may also be an important regulatory control factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号