首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of prey characteristics such as motility and size as well as of predator characteristics such as satiation and preculturing diet on the feeding process of interception feeding heterotrophic nanoflagellates was investigated. Three species of gram-negative bacteria, one species of gram-positive bacteria, two species of cyanobacteria (Synechococcus) and inert latex particles were fed as prey particles for three species of heterotrophic nanoflagellates (Spumella, Ochromonas, Cafeteria). Ingestion rates depended on the satiation of the flagellates and especially on the filling status of the food vacuoles. In addition, the ingestion rates depended on the characteristics of the food particle and were modified by pre-culturing the flagellates on either Pseudomonas putida or Bacillus subtilis. Digestion was found to be particle-specific. Cyanobacteria were excreted a few minutes after ingestion whereas heterotrophic bacteria were stored and digested in the food vacuoles. The spectrum of ingested particles is not identical to that of digested particles and thus neither the diet of the flagellates nor their impact on bacterial communities can be calculated simply from food vacuole content. "Selective digestion" could be shown to be an important selection mechanism concerning natural food particles. The digestion strategies of Cafeteria on the one hand and Spumella and Ochromonas on the other hand may be an important factor to explain protozoan species composition and succession in the field. In addition to bacterial abundance and grazing pressure by metazooplankton, the bacterial speciescomposition as well as biochemical variations within bacterial species may influence protozoan species composition and abundance.  相似文献   

2.
Food selectivity and the mechanisms of food selection were analyzed by video microscopy for three species (Spumella, Ochromonas, Cafeteria) of interception-feeding heterotrophic nanoflagellates. The fate of individual prey particles, either live bacteria and/or inert particles, was recorded during the different stages of the particle-flagellate-interaction, which included capture, ingestion, digestion, and egestion. The experiments revealed species-specific differences and new insights into the underlying mechanisms of particle selection by bacterivorous flagellates. When beads and bacteria were offered simultaneously, both particles were ingested unselectively at similar rates. However, the chrysomonads Spumella and Ochromonas egested the inert beads after a vacuole passage time of only 2-3 min, which resulted in an increasing proportion of bacteria in the food vacuoles. Vacuole passage time for starved flagellates was significantly longer compared to that of exponential-phase flagellates for Spumella and Ochromonas. The bicosoecid Cafeteria stored all ingested particles, beads as well as bacteria, in food vacuoles for more then 30 min. Therefore "selective digestion" is one main mechanism responsible for differential processing of prey particles. This selection mechanism may explain some discrepancies of former experiments using inert particles as bacterial surrogates for measuring bacterivory.  相似文献   

3.
Current models on protistan size-selective feeding assume that contact probability is the factor that largely explains observed food preferences. Contact probability is generally expected to be positively correlated with prey size and therefore to explain observed food selection for larger prey items. We critically tested these basic assumptions on size-selective feeding using the interception-feeding chrysomonad nanoflagellates Ochromonas sp. and Spumella sp. Mechanisms of differential feeding were studied during distinct stages of the selection process (i.e. contact probability, capture efficiency, ingestion efficiency, and differential digestion) by means of high-resolution video microscopy. Food selection was investigated using a mixture of microspheres ranging from 0.3-2.2 microm in diam., as well as a mixed bacterial community. In contrast to current model assumptions, the contact probability was highest for microspheres of intermediate size (0.9-1.2 microm), but was not generally positively correlated with prey size over the whole prey size range. Capture and ingestion also proved to be involved in size selection: these patterns were also independent of the food concentration (p = 0.968 for Ochromonas, p = 0.971 for Spumella). Even though the capture rate was significantly higher for attached flagellates than for swimming flagellates (p < 0.001), size selectivity was not affected (p > 0.05). Our results indicate that: (i) size selection is not actively regulated by these flagellates, but is a passive process; (ii) contact probability is not generally positively correlated with prey size, but shows a maximum for intermediate-sized prey in the prey size spectrum of 0.3-2.2 microm; and (iii) selection steps other than contact probability are crucial for size selection and should be integrated in models on size selection.  相似文献   

4.
Autotrophic picoplankton (<3 microm) composed of both prokaryotes and eukaryotes are the most abundant primary producers on Earth. In this study we examined the ingestion of the picoeukaryote Ostreococcus tauri by different marine heterotrophic nanoflagellates (HNF) with various morphologies, swimming and feeding behaviours. Cultures of specific bacterivorous nanoflagellates (Rhynchomonas nasuta, Jakoba libera, and a culture of Cafeteria sp./Monosiga sp.) and natural nanoflagellate populations were used as grazers. For comparison with Ostreococcus, we used similar-sized prokaryotes as prey, Prochlorococcus and Synechococcus. We observed large species-specific differences in terms of: use of picoautotrophs among nanoflagellates, time lag between prey addition and prey consumption (0-196 h), grazing rate (0-0.12 h(-1)), growth rate (0-0.3 h(-1)) and maximum abundance of HNF reached in experimental bottles (e.g. from 10(4) to 10(5) cells ml(-1), for a natural coastal population and a Cafeteria sp./Monosiga sp. culture feeding Ostreococcus respectively). Overall, this study shows that the nanoflagellate community composition is conclusive for picoautotrophic community structure and, vice versa, the picoautotrophic community structure favours or inhibits the growth of some nanoflagellate groups.  相似文献   

5.
Flagellates are important bacterial grazers in most planktonicfood webs. The prey-size preference of the mixotrophic flagellate,Ochromonas sp. (Chrysophyceae), isolated from an extremely acidiclake, Lake 111 (pH 2.6), was determined using fluorescentlylabelled microspheres (beads). According to grazing experimentswith cultured bacteria, also isolated from Lake 111, the potentialgrazing impact on Lake 111’s single-celled bacterial productionwas calculated. Ochromonas sp. ingested the smallest beads offered(0.5 µm diameter) at the highest rate. Ingestion ratedeclined with increasing bead size. The highest prey volume-specificingestion was measured for Ochromonas sp. feeding on intermediate-sizedbeads (1.9 µm). Ingestion rates were low due in part tothe large fraction of inactive flagellates observed. Accordingto the bacterial ingestion rate, a mean of 88% (epilimnion)and 68% (hypolimnion) of in situ single-celled bacterial productionis potentially grazed daily by Ochromonas sp. In the epilimnionof Lake 111, the heterotrophic carbon gain is three times higherthan the autotrophic production. Alongside carbon uptake, Ochromonassp. also benefits from ingesting bacteria through the uptakeof phosphorus. A biovolume minimum corresponding to the preysize at which Ochromonas sp. feeds most efficiently occurredin the Lake 111 epilimnetic bacterial community, implying top-downcontrol of the bacterial community by Ochromonas sp.  相似文献   

6.
The grazing patterns of heterotrophic nanoflagellates ( Cafeteria roenbergensis and Actinomonas mirabilis ) were recorded by high speed video micrography. Experiments were carried out at 10, 15 and 25° C at a salinity of 36 psu and at 20° C when the salinity was either 20 or 36 psu. Bacteria entrained in a stream of water generated by flagellar beating were propelled toward the cell body (phase 1). Each bacterium destined for ingestion made contact with the anterior end of the flagellum of Cafeteria or was captured with an actinopod of Actinomonas (phase 2). The captured bacterium was drawn close to the cell body (phase 3) and ingested (phase 4). Cafeteria was observed during 38 grazing events and appeared to have two different patterns of ingestion, "enclosing" and "pocket phagocytosis." The mean time for food capture was 0.10 s and the subsequent ingestion was complete on average in 1.59 s. No further bacteria were captured until ingestion was complete. Actinomonas was observed during 27 grazing events in which capture of panicles on an actinopod was followed by transport to the cell body and subsequent "enclosing phagocytosis." The mean time to complete grazing was 39.16 s, which is about 25 times longer than for Cafeteria ; the phase of transport to the cell body occupied most of this time. During the grazing cycle, Actinomonas captured other bacteria on the actinopodia, but sometimes released them. Grazing time in Cafeteria was positively correlated with temperature but not correlated with salinity. Grazing behavior in Actinomonas was correlated with neither temperature nor salinity.  相似文献   

7.
Thirty clones derived from twenty isolates of heterotrophic nanoflagellates originating from a variety of marine and freshwater environments were examined by restriction fragment length polymorphism analysis of small subunit ribosomal RNA genes amplified by the polymerase chain reaction (riboprinting). The data were compared with light and electron microscopical identification of the isolates. On morphological criteria, sixteen of the thirty clones belonged to the genus Paraphysomonas De Saedeleer, seven to the genus Spumella Cienkowski, four to the genus Pteridomonas Penard and three to the genus Cafeteria Fenchel and Patterson. Among these taxa, eleven ribotypes were detected by analysis with the restriction enzymes Hinf I, Hae III, Sau3A I, and Msp I. Differentiation of nanoflagellate taxa by the riboprinting method supported taxonomic classification based on morphology at the generic and species level. The utility of the method for discriminating the 'naked' flagellates and for confirming the identity of polymorphic forms among species of Paraphysomonas is demonstrated.  相似文献   

8.
We examined the impact of nutrient conditions (carbon and phosphorus limitation) and grazing by protozoans on the phenotypic community structure of freshwater bacteria in continuous culture systems. Lakewater bacteria were grown on mineral medium, which was supplemented with glucose and amino acids and adjusted by different phosphorus concentrations to achieve either carbon or phosphorus limitation. Each nutrient treatment was inoculated with the same bacterial community and consisted of a nongrazing and a grazing treatment, to which the heterotrophic nanoflagellates Spumella sp. and Ochromonas sp. were added. We found that nutrient conditions alone resulted in differences in the phenotypic structure of the bacterial community: small and motile bacteria dominated under C limitation while large, elongated, and capsulated bacteria were characteristic for P limitation. The genotypic community composition as measured by T-RFLP (terminal restriction fragment length polymorphism) was not severely influenced by the two nutrient treatments. In the presence of flagellate predators, grazing-resistant bacteria developed under both nutrient conditions, but with different survival mechanisms: highly motile bacteria prevailed under C limitation, whereas the P-limited grazing treatment was dominated by filamentous forms. T-RFLP analysis revealed only moderate changes in bacterial community composition due to grazing, which were most pronounced under P limitation. Analysis by video microscopy revealed that high swimming speed is an efficient nonmorphological survival mechanism for bacteria to reduce the capture success of the flagellate predator. The rejection of optimal-sized, nonmotile bacteria under P limitation suggests the importance of other nonmorphological, surface-located cell properties. Our results illustrate that the realized mechanisms of grazing resistance are linked to the actual limitation conditions, and that the combined effects of nutrient limitation and grazing are major determinants of bacterial community structure.  相似文献   

9.
Interactions of the main components of microbial planktonic food web (bacteria, heterotrophic nanoflagellates, and viruses) were studied in a protected overgrown littoral zone of the Rybinsk Reservoir (Upper Volga). The effect of colonial bird settlements (the Laridae family) on these processes was determined. The following systems exhibited significant negative correlations: “heterotrophic nanoflagellates–large rod-shaped bacteria” (“predator–prey”), “viruses-bacteriophages–bacterial products” (“parasite–host”) and “heterotrophic nanoflagellates–viruses-bacteriophages”. Relations between biotic factors controlling bacterial development were more pronounced outside the zone affected by colonial bird settlements. Near the bird colony the role of viruses in mortality of planktonic bacteria increased. Reproduction of bacterial cells accelerated in response to the increase in feeding activity of heterotrophic nanoflagellates. Virusesbacteriophages and heterotrophic nanoflagellates probably eliminate different targets until medium-sized cells become predominant in the bacterial community. Then heterotrophic nanoflagellates consume bacterial cells infected with viruses.  相似文献   

10.
Here we present a new approach to quantify food-web interactions within semi-natural biofilms by combining the establishment of biofilms from natural rivers in flow cells with video microscopy. In a first application of this approach, we focused on the surface-gliding heterotrophic flagellates (HF) Neobodo designis, Rhynchomonas nasuta and Planomonas sp. It was shown that the three HF generally ingested single biofilm-associated bacteria whereas bacteria within microcolonies were attacked but not ingested. However, grazing strategies differed considerably. While the kinetoplastids N. designis and R. nasuta displayed long search and short handling times, Planomonas sp. showed the opposite grazing characteristics. The latter behaviour resulted in a high relative predation success of 80% (precent of attacked prey ingested), whereas the relative predation success of the two kinetoplastids was only 20%. However, the two contrasting strategies resulted in similar ingestion rates for Planomonas sp. and N. designis of 0.5 to 0.6 ingestions flagellates(-1) minute(-1), respectively. Our results showed distinct differences in the feeding behaviour of three flagellates having similar life forms and provide direct evidence that microcolony formation in biofilms protects bacteria from grazing by HF in situ. The new approach provides individual-based insights into the complex food web interactions within biofilms.  相似文献   

11.
Temporal dynamics of the microbial food web in the Barents Sea and adjacent water masses in the European Arctic are to a large extent unknown. Seasonal variation in stocks and production rates of heterotrophic bacteria and phototrophic and heterotrophic picoplankton and nanoflagellates was investigated in the upper 50 m of the high-latitude Kongsfjorden, Svalbard, during six field campaigns between March and December 2006. Heterotrophic bacteria, picoplankton and nanoflagellates contributed to ecosystem structure and function in all seasons. Activity within the microbial food web peaked during spring bloom in April, parallel to low abundances of mesozooplankton. In the nutrient-limited post-bloom scenario, an efficient microbial loop, fuelled by dissolved organic carbon from abundant mesozooplankton feeding on phytoplankton and protozooplankton, facilitated maximum integrated primary production rates. A tight microbial food web consisting of heterotrophic bacteria and phototrophic and heterotrophic picoplankton and nanoflagellates was found in the stratified water masses encountered in July and September. Microbial stocks and rates were low but persistent under winter conditions. Seasonal comparisons of microbial biomass and production revealed that structure and function of the microbial food web were fundamentally different during the spring bloom when compared with other seasons. While the microbial food web was in a regenerative mode most of the time, during the spring bloom, a microbial transfer mode represented a trophic link for organic carbon in time and space. The microbial food web’s ability to fill different functional roles in periods dominated by new and regenerated production may enhance the ecological flexibility of pelagic ecosystems in the present era of climate change.  相似文献   

12.
Grazing of heterotrophic nanoflagellates on marine picophytoplankton presents a major mortality factor for this important group of primary producers. However, little is known of the selectivity of the grazing process, often merely being thought of as a general feature of cell size and motility. In this study, we tested grazing of two heterotrophic nanoflagellates, Paraphysomonas imperforata and Pteridomonas danica , on strains of marine Synechococcus . Both nanoflagellates proved to be selective in their grazing, with Paraphysomonas being able to grow on 5, and Pteridomonas on 11, of 37 Synechococcus strains tested. Additionally, a number of strains (11 for Paraphysomonas , 9 for Pteridomonas ) were shown to be ingested, but not digested (and thus did not support growth of the grazer). Both the range of prey strains that supported growth as well as those that were ingested but not digested was very similar for the two grazers, suggesting a common property of these prey strains that lent them susceptible to grazing. Subsequent experiments on selected Synechococcus strains showed a pronounced difference in grazing susceptibility between wild-type Synechococcus sp. WH7803 and a spontaneous phage-resistant mutant derivative, WH7803PHR, suggesting that cell surface properties of the Synechococcus prey are an important attribute influencing grazing vulnerability.  相似文献   

13.
Ecological stoichiometry focuses on the balance between multiple nutrient elements in resources and in consumers of those resources. The major consumers of bacteria in aquatic food webs are heterotrophic and mixotrophic nanoflagellates. Despite the importance of this consumer-resource interaction to understanding nutrient dynamics in the aquatic food web, few data are available addressing the element stoichiometry of flagellate consumers. Ochromonas danica, a mixotrophic bacterivore, was used as a model organism to study the relationships among temperature, growth rate and element stoichiometry. Ochromonas danica was grown in chemostats at dilution rates ranging between 0.03 and 0.10 h(-1) and temperatures ranging between 15 and 28 °C. Cells accumulated elements as interactive functions of temperature and growth rate, with the highest element concentrations corresponding to cells grown at a low temperature and high growth rates. The highest concentrations of elements were associated with small cells. Temperature and growth rate affected the element stoichiometry (as C:N, C:P and N:P) of O. danica in a complex manner, but the growth rate had a greater effect on ratios than did temperature.  相似文献   

14.
This work aims to outline the dynamics of trophic links between the three main microbial components (bacteria, nanoflagellates, and ciliates) of the Farasan Archipelago in order to establish a baseline for future research in this area. The Farasan Archipelago lies along the southwestern coast of the Saudi Arabia, southern Red Sea between 16°20′–17°10′N and 41°30′–42°30′E and had been declared as marine and terrestrial reserve by the year 1996. Three different sites were chosen for this study, with each site visited bimonthly for 18 months from September 2016 to February 2018. Bacteria, nanoflagellates and ciliates were enumerated in order to explore the complex interactions between the main microbial categories in sea waters of the Farasan Archipelago. High abundances were recorded during the present study for bacteria (8.7 × 106 bacteria ml−1), nanoflagellates (3.7 × 104 TNAN ml−1) and ciliates (40.4 ciliates ml−1). The paper discusses the various potential pathways controlling the complex interactions between these microbial groups in this part of the southern Red Sea. It is concluded that a linear trophic chain consisting of bacteria; heterotrophic nanoflagellates; filter feeding ciliates is a major route by which the production of bacteria is transferred to the higher consuming levels, thereby confirming the high importance of t bottom-up control (food supply), alongside top-down control (predation) in regulating bacterial abundances in the Farasan Archipelago. During the present investigation, each nanoflagellate ingested between 11 and 87 bacteria in one hour, while each ciliate consumed between 20 and 185 nanoflagellates every hour. These calculated grazing rates of protistan eukaryotes confirmed the role of heterotrophic nanoflagellates as the main consumers of bacteria, and the role of ciliates as the major control for the heterotrophic nanoflagellate population dynamics, and thus the top predators within the microbial plankton assemblage in the Farasan Archipelago.  相似文献   

15.
In order to characterize copepod feeding in relation to microbial plankton community dynamics, we combined metabarcoding and metabolome analyses during a 22‐day seawater mesocosm experiment. Nutrient amendment of mesocosms promoted the development of haptophyte (Phaeocystis pouchetii)‐ and diatom (Skeletonema marinoi)‐dominated plankton communities in mesocosms, in which Calanus sp. copepods were incubated for 24 h in flow‐through chambers to allow access to prey particles (<500 μm). Copepods and mesocosm water sampled six times spanning the experiment were analysed using metabarcoding, while intracellular metabolite profiles of mesocosm plankton communities were generated for all experimental days. Taxon‐specific metabarcoding ratios (ratio of consumed prey to available prey in the surrounding seawater) revealed diverse and dynamic copepod feeding selection, with positive selection on large diatoms, heterotrophic nanoflagellates and fungi, while smaller phytoplankton, including P. pouchetii, were passively consumed or even negatively selected according to our indicator. Our analysis of the relationship between Calanus grazing ratios and intracellular metabolite profiles indicates the importance of carbohydrates and lipids in plankton succession and copepod–prey interactions. This molecular characterization of Calanus sp. grazing therefore provides new evidence for selective feeding in mixed plankton assemblages and corroborates previous findings that copepod grazing may be coupled to the developmental and metabolic stage of the entire prey community rather than to individual prey abundances.  相似文献   

16.
Current models suggest that (i) filamentous bacteria are protected against predation by nanoflagellates, (ii) prey size is positively correlated with prey-predator contact probability, and (iii) contact probability is mainly responsible for size-selective predation by interception-feeding flagellates. We used five strains of filamentous bacteria and one bacterivorous nanoflagellate, Ochromonas sp. strain DS, to test these assumptions. The five strains, including one spirochete and four Betaproteobacteria strains, were isolated by the filtration-acclimatization method. All five strains possess flexible cells, but they differ in average cell length, which ranged from 4.5 to 13.7 micro m. High-resolution video microscopy was used to measure contact, capture, and ingestion rates, as well as selectivity of the flagellate feeding. Growth and feeding experiments with satiating and nonsatiating food conditions, as well as experiments including alternative well-edible prey, were performed. In contrast to predictions by current models, the flagellate successfully consumed all the tested filamentous strains. The ingestion rate was negatively correlated with bacterial length. On the other hand, the lengths of the filamentous bacteria were not positively correlated to the contact rate and capture rate but were negatively correlated to ingestion efficiency. In experiments including alternative nonfilamentous prey, the flagellates showed negative selection for filamentous bacteria, which was independent of food concentration and is interpreted as a passive selection. Our observations indicate that (i) size alone is not sufficient to define a refuge for filamentous bacteria from nanoflagellate predation and (ii) for the investigated filamentous bacteria, prey-predator contact probability could be more influenced by factors other than the prey size.  相似文献   

17.
Aggregate stages of the salps Thalia democratica, Cyclosalpaaffinis and Salpa cylindrica collected by SCUBA diving in theMid-Atlantic Bight were fed with naturally occurring food assemblages.This is one of the few studies where salps have been fed withnatural food assemblages. The estimated clearance rate for allspecies based on disappearance of chlorophyll varied from 82to 444 mL individual–1 day–1. Cell counts showedthat T. democratica mostly ingested carbon from autotrophicnanoflagellates and autotrophic dinoflagellates. Ingestion byS. cylindrica was primarily on larger prey, such as dinoflagellates,while C. affinis ingested auto- and heterotrophic nanoflagellates.All main prey types ingested by salps corresponded to thosethat contributed most to biomass at each experimental station.Thus, salps fed on naturally occurring particles primarily inproportion to prey biomass and to their mechanical capacityto be retained and ingested. Feeding by salps on dinoflagellatesand ciliates implies that they may act not only as potentialcompetitors with microzooplankton, but also as consumers ofthem.  相似文献   

18.
Heterotrophic nanoflagellates are ubiquitous and known to be major predators of bacteria. The feeding of free-living heterotrophic nanoflagellates on phytoplankton is poorly understood, although these two components usually co-exist. To investigate the feeding and ecological roles of major heterotrophic nanoflagellates Katablepharis spp., the feeding ability of Katablepharis japonica on bacteria and phytoplankton species and the type of the prey that K. japonica can feed on were explored. Furthermore, the growth and ingestion rates of K. japonica on the dinoflagellate Akashiwo sanguinea—a suitable algal prey item—heterotrophic bacteria, and the cyanobacteria Synechococcus sp., as a function of prey concentration were determined. Among the prey tested, K. japonica ingested heterotrophic bacteria, Synechococcus sp., the prasinophyte Pyramimonas sp., the cryptophytes Rhodomonas salina and Teleaulax sp., the raphidophytes Heterosigma akashiwo and Chattonella ovata, the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum donghaiense, Alexandrium minutum, Cochlodinium polykrikoides, Gymnodinium catenatum, A. sanguinea, Coolia malayensis, and the ciliate Mesodinium rubrum, however, it did not feed on the dinoflagellates Alexandrium catenella, Gambierdiscus caribaeus, Heterocapsa triquetra, Lingulodinium polyedra, Prorocentrum cordatum, P. micans, and Scrippsiella acuminata and the diatom Skeletonema costatum. Many K. japonica cells attacked and ingested a prey cell together after pecking and rupturing the surface of the prey cell and then uptaking the materials that emerged from the ruptured cell surface. Cells of A. sanguinea supported positive growth of K. japonica, but neither heterotrophic bacteria nor Synechococcus sp. supported growth. The maximum specific growth rate of K. japonica on A. sanguinea was 1.01 d−1. In addition, the maximum ingestion rate of K. japonica for A. sanguinea was 0.13 ng C predator−1d−1 (0.06 cells predator−1d−1). The maximum ingestion rate of K. japonica for heterotrophic bacteria was 0.019 ng C predator−1d−1 (266 bacteria predator−1d−1), and the highest ingestion rate of K. japonica for Synechococcus sp. at the given prey concentrations of up to ca. 107 cells ml−1 was 0.01 ng C predator−1d−1 (48 Synechococcus predator−1d−1). The maximum daily carbon acquisition from A. sanguinea, heterotrophic bacteria, and Synechococcus sp. were 307, 43, and 22%, respectively, of the body carbon of the predator. Thus, low ingestion rates of K. japonica on heterotrophic bacteria and Synechococcus sp. may be responsible for the lack of growth. The results of the present study clearly show that K. japonica is a predator of diverse phytoplankton, including toxic or harmful algae, and may also affect the dynamics of red tides caused by these prey species.  相似文献   

19.
A procedure was developed to estimate the direct grazing impacton free-living heterotrophic nanoflagellates (HNF). Culturedflagellates were labelled by feeding on brightly fluorescingbacteria (FLB) and then offered as indirectly fluorescentlylabelled flagellates (IFLF) to potential predators of HNF. Thenumber of FLB in the predators' food vacuoles could be convertedinto IFLF uptake and consumption of HNF. This new techniquewas used to study the HNF-ciliate relationship in the pelagiczone of Lake Constance. Three groups of ciliates were detectedas HNF grazers: small representatives of the genus Strobilidium.a small Haltena-like ciliate (probably Halteria grandinella)and a Codonella sp. Tintinnidium sp. group The ingestion ofHNF by these groups of ciliates ranged between 3 and 15, 3 and39, and 3 and 7 HNF ciliate–1 h–1; respectively.The IFLF method allows the direct determination of ingestedflagellate prey in the food vacuoles of their predators. Becauseindigenous living prey organisms were used, tracer discriminationcan be reduced.  相似文献   

20.
The relationship between food preference hierarchy and consumption rate was examined for the grass carp, Ctenopharygodon idella , and its Fl hybrid (grass carp × bighead carp). Preferences of both types of fish were similar, although hybrids consumed vegetation at a much lower rate. For both, relative preference in feeding trials with mixed plant species was significantly correlated with consumption rate in monospecific feeding experiments. No correlations were found between preference and caloric content, protein content or relative water content. The hypothesis is proposed that preference hierarchies reflect relative handling times of different food types and that these fish maximize 'through-put' by preferentially consuming plant species which can be most rapidly ingested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号