首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokines are a family of chemotactic peptides affecting leukocyte migration during the inflammatory response. Post-translational modification of chemokines has been shown to affect their biological potency. Here, the isolation and identification of natural isoforms of the neutrophil chemoattractants GRO alpha and GRO gamma and the epithelial-cell-derived neutrophil attractant-78 (ENA-78), is reported. Cultured tumor cells produced predominantly intact chemokine forms, whereas peripheral blood monocytes secreted mainly NH2-terminally truncated forms. The order of neutrophil chemotactic potency of these CXC chemokines was GRO alpha > GRO gamma > ENA-78 both for intact and truncated forms. However, truncated GRO alpha (4,5,6-73), GRO gamma (5-73) and ENA-78(8,9-78) were 30-fold, fivefold and threefold more active than the corresponding intact chemokine. As a consequence, truncated GRO alpha (4,5,6-73) was 300-fold more potent than intact ENA-78 indicating that both the type of chemokine and its mode of processing determine the chemotactic potency. Similar observations were made when intact and truncated GRO alpha, GRO gamma and ENA-78 were compared for their capacity to induce an increase in the intracellular calcium concentration in neutrophilic granulocytes, and to desensitize the calcium response towards the CXC chemokine granulocyte chemotactic protein-2 (GCP-2). It must be concluded that physiological proteolytic cleavage of CXC chemokines in general enhances the inflammatory response, whereas for CC chemokines NH2-terminal processing mostly results in reduced chemotactic potency.  相似文献   

2.
The activity of a novel series of peptidomimetic hematoregulatory compounds, designed based on a pharmacophore model inferred from the structure activity relationships of a peptide SK&F 107647 (1), is reported. These compounds induce a hematopoietic synergistic factor (HSF) which in turn modulates host defense. The compounds may represent novel therapeutic agents in the area of hematoregulation.  相似文献   

3.
4.
In this study, we have examined the ability of chemokine receptor antagonists to prevent neutrophil extravasation in the mouse. Two murine CXC chemokines, macrophage-inflammatory protein (MIP)-2 and KC, stimulated the accumulation of leukocytes into s.c. air pouches, although MIP-2 was considerably more potent. The leukocyte infiltrate was almost exclusively neutrophilic in nature. A human CXC chemokine antagonist, growth-related oncogene (GRO)-alpha(8-73), inhibited calcium mobilization induced by MIP-2, but not by platelet-activating factor in leukocytes isolated from the bone marrow, indicating that this antagonist inhibits MIP-2 activity toward murine leukocytes. Pretreatment of mice with GROalpha(8-73) inhibited, in a dose-dependent manner, the MIP-2-induced influx of neutrophils to levels that were not significantly different from control values. Moreover, this antagonist was also effective in inhibiting the leukocyte recruitment induced by TNF-alpha, LPS, and IL-1beta. Leukocyte infiltration into the peritoneal cavity in response to MIP-2 was also inhibited by prior treatment of mice with GROalpha(8-73) or the analogue of platelet factor 4, PF4(9-70). The results of this study indicate 1) that the murine receptor for MIP-2 and KC, muCXCR2, plays a major role in neutrophil recruitment to s.c. tissue and the peritoneal cavity in response to proinflammatory agents and 2) that CXCR2 receptor antagonists prevent acute inflammation in vivo.  相似文献   

5.
Chemokines are involved in recruitment and activation of hematopoietic cells at sites of infection and inflammation. The M3 gene of gammaHV68, a gamma-2 herpesvirus that infects and establishes a lifelong latent infection and chronic vasculitis in mice, encodes an abundant secreted protein during productive infection. The M3 gene is located in a region of the genome that is transcribed during latency. We report here that the M3 protein is a high-affinity broad-spectrum chemokine scavenger. The M3 protein bound the CC chemokines human regulated upon activation of normal T-cell expressed and secreted (RANTES), murine macrophage inflammatory protein 1alpha (MIP-1alpha), and murine monocyte chemoattractant protein 1 (MCP-1), as well as the human CXC chemokine interleukin-8, the murine C chemokine lymphotactin, and the murine CX(3)C chemokine fractalkine with high affinity (K(d) = 1. 6 to 18.7 nM). M3 protein chemokine binding was selective, since the protein did not bind seven other CXC chemokines (K(d) > 1 microM). Furthermore, the M3 protein abolished calcium signaling in response to murine MIP-1alpha and murine MCP-1 and not to murine KC or human stromal cell-derived factor 1 (SDF-1), consistent with the binding data. The M3 protein was also capable of blocking the function of human CC and CXC chemokines, indicating the potential for therapeutic applications. Since the M3 protein lacks homology to known chemokines, chemokine receptors, or chemokine binding proteins, these studies suggest a novel herpesvirus mechanism of immune evasion.  相似文献   

6.
The hypothesis that the neutrophil chemoattractant CXC chemokines KC and macrophage inflammatory protein-2 (MIP-2) are involved in neutrophil transmigration and liver injury was tested in C3Heb/FeJ mice treated with galactosamine (Gal, 700 mg/kg), endotoxin (ET, 100 microg/kg), or Gal + ET (Gal/ET). Hepatic KC and MIP-2 mRNA levels and plasma CXC chemokine concentrations were dramatically increased 1.5 h after Gal/ET or ET alone and gradually declined up to 7 h. Murine recombinant cytokines (TNF-alpha, IL-1 alpha, and IL-1 beta), but not Gal/ET, induced CXC chemokine formation in the ET-resistant C3H/HeJ strain. To assess the functional importance of KC and MIP-2, C3Heb/FeJ mice were treated with Gal/ET and control IgG or a combination of anti-KC and anti-MIP-2 antibodies. Anti-CXC chemokine antibodies did not attenuate hepatocellular apoptosis, sinusoidal neutrophil sequestration and extravasation, or liver injury at 7 h. Furthermore, there was no difference in liver injury between BALB/cJ wild-type and CXC receptor-2 gene knockout (CXCR2-/-) mice treated with Gal/ET. The higher neutrophil count in livers of CXCR2-/- than in wild-type mice after Gal/ET was caused by the elevated number of neutrophils located in sinusoids of untreated CXCR2-/- animals. The pancaspase inhibitor Z-Val-Ala-Asp-fluoromethylketone eliminated Gal/ET-induced apoptosis and neutrophil extravasation and injury but not CXC chemokine formation. Thus Gal/ET induced massive, cytokine-dependent CXC chemokine formation in the liver. However, neutrophil extravasation and injury occurred in response to apoptotic cell injury at 6-7 h and was independent of CXC chemokine formation.  相似文献   

7.
Chemokines provide directional cues for leukocyte migration and activation that are essential for normal leukocytic trafficking and for host responses during processes such as inflammation, infection, and cancer. Recently we reported that matrix metalloproteinases (MMPs) modulate the activity of the CC chemokine monocyte chemoattractant protein-3 by selective proteolysis to release the N-terminal tetrapeptide. Here we report the N-terminal processing, also at position 4-5, of the CXC chemokines stromal cell-derived factor (SDF)-1alpha and beta by MMP-2 (gelatinase A). Robustness of the MMP family for chemokine cleavage was revealed from identical cleavage site specificity of MMPs 1, 3, 9, 13, and 14 (MT1-MMP) toward SDF-1; selectivity was indicated by absence of cleavage by MMPs 7 and 8. Efficient cleavage of SDF-1alpha by MMP-2 is the result of a strong interaction with the MMP hemopexin C domain at an exosite that overlaps the monocyte chemoattractant protein-3 binding site. The association of SDF-1alpha with different glycosaminoglycans did not inhibit cleavage. MMP cleavage of SDF-1alpha resulted in loss of binding to its cognate receptor CXCR-4. This was reflected in a loss of chemoattractant activity for CD34(+) hematopoietic progenitor stem cells and pre-B cells, and unlike full-length SDF-1alpha, the MMP-cleaved chemokine was unable to block CXCR-4-dependent human immunodeficiency virus-1 infection of CD4(+) cells. These data suggest that MMPs may be important regulatory proteases in attenuating SDF-1 function and point to a deep convergence of two important networks, chemokines and MMPs, to regulate leukocytic activity in vivo.  相似文献   

8.
The three-dimensional structure of a novel four amino acid truncated form of the CXC chemokine GRObeta [5-73] isolated from bone marrow stromal cells with potent hematopoietic and anti-infective activities has been determined by two-dimensional (1)H nuclear magnetic resonance (NMR) spectroscopy in solution. On the basis of 1878 upper distance constraints derived from nuclear Overhauser effects (NOE) and 314 dihedral angle constraints, a group of 20 conformers representing the solution structure of the human GRObeta [5-73] was computed with the program DYANA. At the concentrations used for NMR study, GRObeta [5-73] forms a dimer in solution that is architectured by a six-stranded antiparallel beta-sheet (residues 25 to 29, 39 to 44, 49 to 52) and a pair of helices (residues 58 to 68) with 2-fold symmetry, while the C terminus of the protein is disordered. The average of the pairwise root-mean-square deviations of individual NMR conformers relative to the mean coordinates for the backbone atoms N, C(alpha) and C' of residues 5 to 68 is 0.47 A. Overall, the global fold of GRObeta [5-73] is similar to that of the previously reported NMR structure of GROalpha and the NMR and X-ray structures of interleukin-8. Among these three CXC chemokines, GRObeta [5-73] is most similar in structure to GROalpha. Significant differences between GRObeta [5-73], GROalpha and interleukin-8 are in the N-terminal loop comprising residues 12 to 19. The N-terminal arm containing the conserved ELR motif and the loop of residues 30 to 38 containing the GPH motif are different among these three CXC chemokines. The structural differences in these two regions may be responsible for the specificity of the receptor binding and biological activity of different chemokines.  相似文献   

9.
Novel chicken CXC and CC chemokines   总被引:4,自引:0,他引:4  
Upon stimulation with lipopolysaccharide (LPS) the chicken macrophage cell line HD-11 secretes factors with cytokine activity. To characterize these molecules, representational difference analysis with RNA of LPS-induced and uninduced HD-11 cells was performed. Two cDNA clones were isolated that code for polypeptides with structural features of chemokines. cDNA K60 codes for a novel CXC chemokine of 104 residues including a putative signal peptide of 20 amino acids at the N-terminus. It is 67% identical to the previously cloned chicken chemokine 9E3/CEF4. K60 exhibits a similar degree of sequence identity to human interleukin 8 and other related CXC chemokines (about 50%), rendering straight-forward predictions of its biological properties difficult. cDNA K203 codes for a novel CC chemokine of 89 amino acids including a putative N-terminal signal peptide of 21 residues. It is 43% identical to a previously characterized chicken protein with homology to mammalian macrophage inflammatory protein 1beta (MIP-1beta). K203 exhibits about 50% sequence identity to human MIP-1beta and other related CC chemokines.  相似文献   

10.
11.
We have recently shown that IFN-inducible protein 10 (IP-10), a member of the CXC chemokine family, is induced in hepatocytes surrounded by infiltrative mononuclear cells in human livers with chronic hepatitis. Hence, we examined the kinds of stimuli that can induce IP-10 expression in hepatocytes in vivo. While the liver expressed three chemokine genes (IP-10, JE/MCP-1, KC/GRO) in a tissue-specific fashion following systemic treatment with pro-inflammatory cytokines, IP-10 mRNA expression showed the most marked liver-specificity. Pretreatment with GM-CSF selectively inhibited IL-1beta, but not TNF-alpha-induced IP-10 mRNA expression. In situ hybridization analysis in the liver and Northern hybridization analysis in isolated liver cell fractions from rodents treated with pro-inflammatory cytokines revealed cellular sources of chemokine expression. IP-10 mRNA expression in hepatocytes was induced by i.v. administration of TNF-alpha, and to a much lesser extent in response to IL-1beta and IFN-gamma, whereas Kupffer cells and endothelial cells expressed IP-10 mRNA equivalently in response to these three stimuli. On the other hand, JE/MCP-1 mRNA expression was detected only in non-parenchymal cells in response to TNF-alpha and IL-1beta, but not in response to IFN-gamma. KC/GRO mRNA expression was also induced mainly in sinusoidal cells by treatment with TNF-alpha or IL-1beta, although it was detected to a lesser extent in hepatocytes. Our results demonstrated that chemokine induction is stimulus-, tissue- and cell type-specific and that IP-10 (but not MCP-1) is inducible in hepatocytes by TNF-alpha most potently, even in the presence of GM-CSF, suggesting the specific role of TNF-alpha-induced IP-10 on intralobular mononuclear infiltration in chronic hepatitis.  相似文献   

12.
In the present study the regulation of CXC chemokine expression was evaluated in full-thickness abdominal wounds in mice. During the first 24 h after injury, IL-1alphabeta, KC, macrophage-inflammatory protein (MIP)-2, and monocyte chemoattractant protein-1 were the predominant cytokines and chemokines produced; TNF-alpha was not detected. Chemokine mRNA expression and protein secretion occurred in two temporal stages. The first, which reached a maximum at 6 h, was associated with high levels of IL-1alpha and KC and low levels of MIP-2. This stage could be reproduced by intradermal injection of IL-1alpha or IL-1beta and was partially blocked by injection of neutralizing Ab against IL-1alpha but not IL-1beta. In animals depleted of circulating neutrophils, chemokine expression was reduced by nearly 70% during this stage. In the second stage, which peaked at 24 h after injury, modest but significant levels of IL-1beta were detected in association with low levels of KC and high levels of MIP-2. This pattern of chemokine expression could not be mimicked by injection of IL-1alpha or IL-1beta (even with prolonged exposure), although MIP-2 expression could be partially inhibited by intradermal injection of neutralizing Ab against IL-1beta. Surprisingly, neutrophil depletion before injury resulted in sustained high levels of both KC and MIP-2 expression. These observations demonstrate that these two closely related chemokines are under distinct regulatory controls in vivo that are likely to reflect the temporally ordered participation of different cell types and/or extracellular stimuli and inhibitors.  相似文献   

13.
The CC chemokine eotaxin plays a predominant role in eosinophil trafficking in vivo by specifically activating the chemokine receptor CCR3. We have screened a series of synthetic peptides corresponding to extracellular regions of CCR3 for their ability to bind eotaxin. A peptide corresponding to the N terminus of CCR3 (CCR3-(1-35)) bound to eotaxin with a dissociation constant of 80 +/- 38 micrometer. However, linear or cyclic peptides derived from the first and third extracellular loops of CCR3 did not bind to eotaxin. Linear and cyclic peptides derived from the second extracellular loop precipitated upon addition of eotaxin. (1)H-(15)N correlation NMR spectroscopy indicated that an extended groove in the eotaxin surface, whose edges are defined by the N-loop, 3(10)-helical turn, and beta(2)-beta(3) hairpin, is the most likely binding surface for CCR3-(1-35). NMR assignments for CCR3-(1-35) were obtained using two-dimensional and three-dimensional homonuclear NMR experiments. (15)N-Filtered TOCSY spectra indicated that the central region of CCR3-(1-35), surrounding the DDYY sequence, is involved in the interaction with eotaxin. This was supported by the observation that a truncated N-terminal peptide (CCR3-(8-23)) binds to eotaxin with a dissociation constant of 136 +/- 23 micrometer, only slightly weaker than the full-length N-terminal peptide. Taken together with previous studies, these results suggest that interactions between the N-loop/beta(3) regions of chemokines and the N-terminal regions of their receptors may be a conserved feature of chemokine-receptor complexes across the CC, CXC, and C chemokine subfamilies. However, the low affinity of the interactions observed in these studies suggests the existence of additional binding regions in both the chemokines and the receptors.  相似文献   

14.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

15.
Activation and accumulation of leukocytes constitute a rate-limiting step in ischemia/reperfusion (I/R)-induced tissue injury. The signalling mechanisms, however, that regulate leukocyte rolling and adhesion in the colonic microcirculation are not known. The objective of the study was to define the role of CXC chemokines (MIP-2 and KC) in I/R-induced leukocyte-endothelial cell interactions in the mouse colon. In C57/B16 mice, colonic ischemia was induced by clamping the superior mesenteric artery for 30 min and leukocyte rolling and stationary adhesion were examined in venules after 120 and 240 min of reperfusion. I/R provoked a clear-cut increase in leukocyte rolling and adhesion in colonic venules. Both MIP-2 and KC were upregulated at the gene and protein level in the reperfused colon. Immunoneutralization of MIP-2 and KC by monoclonal antibodies reduced reperfusion-induced firm adhesion of leukocytes by 73% and 75%, respectively. Interestingly, combined inhibition of MIP-2 and KC additionally decreased leukocyte rolling by 79%, but did not further reduce the number of firmly adherent leukocytes. To study the role of oxygen free radicals (OFRs) in the regulation of CXC chemokine expression, additional animals were pretreated with the xanthine-oxidase inhibitor allopurinol. In fact, allopurinol treatment reduced the colonic levels of MIP-2 and KC by 62% and 64%, respectively. This study elucidates important interactions between OFRs and chemokines in the I/R-induced leukocyte response in the mouse colon. Moreover, our data demonstrate that CXC chemokines play a fundamental role in colonic I/R and that functional interference with CXC chemokines may protect against pathological inflammation in the colon.  相似文献   

16.
Chemokines are small peptides involved in the recruitment of various cell types into inflammatory sites. They are divided into four sub-families depending on the presence of amino acids separating the cysteine residues in their N-terminal region. These are the alpha (CXC), beta (CC), gamma (C) and delta (CX)C) chemokines. In addition, five CXC chemokine (CXCR1-5), nine CC chemokine (CCR1-9), one C chemokine (XCR1) and one C-X3C chemokine (CX3CR1) receptors have been identified. These receptors belong to the seven transmembrane spanning domain family, and are coupled to the heterotrimeric guanine nucleotide binding (G) proteins. Chemokines activate various immune cells, and in particular the anti-viral/anti-tumour effectors, the natural killer (NK) cells by activating members of the heterotrimeric G proteins. The importance of the family of chemokines is highlighted by the ability of its members to inhibit the replication of HIV-1 strains in CD4+ cells, where chemokine receptors act as HIV-1 co-receptors. This review discusses the intracellular signalling pathways induced by chemokines in NK and other cell types, and the relationships to HIV-1 signalling in these cells.  相似文献   

17.
Chemokines are a large family of chemotactic cytokines playing crucial roles in the innate immune response. In the present study, we report the cloning of a CXC chemokine gene resembling the closely related CXCL9/CXCL10/CXCL11 from the miiuy croaker Miichthys miiuy (MimiCXC). Both 5'-RACE and 3'-RACE were carried out in order to obtain the complete cDNA, which consists of a 73 bp 5'-UTR, a 369 bp open reading frame encoding 122 amino acids and a 715 bp 3'-UTR. The deduced MimiCXC contains a 19-aa signal peptide and a 103-aa mature polypeptide, which possesses the typical arrangement of four cysteines as found in other known CXC chemokines. It shares 4.8%-65.6% sequence identities to mammalian CXC chemokines and the highest sequence identity of 65.6% is between MimiCXC and CXCL10 chemokine. Three exons and two introns were identified in MimiCXC gene. The MimiCXC gene was constitutively expressed in all tissues tested, although at different levels. Upon induction with Vibrio anguillarum, MimiCXC gene expression was up-regulated in kidney and spleen, however, down-regulated in liver. These results indicate that MimiCXC may be involved in immune responses as well as homeostatic processes in miiuy croaker.  相似文献   

18.
Survival from murine pulmonary nocardiosis is highly dependent on CXC chemokine receptor-2 (CXCR2) ligand-mediated neutrophil chemotaxis and subsequent clearance of the infectious agent Nocardia asteroides. Intratracheal inoculation of N. asteroides rapidly up-regulated the CXC chemokines macrophage inflammatory protein-2 (MIP-2) and KC within 24 h, with levels remaining elevated through day 3 before returning to near baseline levels by day 7. Coinciding with elevated MIP-2 and KC were the rapid recruitment of neutrophils and clearance of the organism. Anti-Ly-6G Ab-mediated neutrophil depletion before bacterial challenge resulted in strikingly increased mortality to N. asteroides infection. The relative contribution of MIP-2 in neutrophil recruitment was examined by anti-MIP-2 Ab treatment before nocardial infection. MIP-2 neutralization had no detrimental effects on survival, neutrophil recruitment, or bacterial clearance, suggesting the usage of additional or alternative CXCR2-binding ligands. The importance of the CXC family of chemokines was determined by the administration of an anti-CXCR2 Ab capable of blocking ligand binding in vivo. Anti-CXCR2 treatment greatly increased mortality by preventing neutrophil migration into the lung. Paralleling this impaired neutrophil recruitment was a 100-fold increase in lung bacterial burden. Combined, these observations indicate a critical role for neutrophils and CXC chemokines during nocardial pneumonia. These data directly link CXCR2 ligands and neutrophil recruitment and lend further support to the concept of CXC chemokine redundancy. For infections highly dependent on neutrophils, such as nocardial pneumonia, this is of critical importance.  相似文献   

19.
Intestinal epithelial cells are the initial sites of host response to Clostridium difficile infection and can play a role in signaling the influx of inflammatory cells. To further explore this role, the regulated expression and polarized secretion of CXC and CC chemokines by human intestinal epithelial cells were investigated. An expression of the CXC chemokines, including IL-8 and growth-related oncogene (GRO)-alpha, and the CC chemokine monocyte chemoattractant protein (MCP)-1 from HT-29 cells increased in the 1-6 hr following C. difficile toxin A stimulation, assessed by quantitative RT-PCR. In contrast, the expression of neutrophil activating protein-78 (ENA-78) was delayed for 18 hr. The up-regulated mRNA expression of chemokines was paralleled by the increase of protein levels. However, the expression of macrophage inflammatory protein (MIP)-1alpha, RANTES (regulated on activation normal T cells expressed and secreted), and interferon-gamma-inducible protein-10 (IP-10) was not changed in HT-29 or Caco-2 cells stimulated with toxin A. Upon stimulation of the polarized Caco-2 epithelial cells in a transwell chamber with toxin A, CXC and CC chemokines were released predominantly into the basolateral compartment. Moreover, the addition of IFN-gamma and TNF-alpha to toxin A stimulated Caco-2 cells increased the basolateral release of CC chemokine MCP-1. In contrast, IFN-gamma and TNF-alpha had no effect on the expression of the CXC chemokines IL-8 and GRO-alpha. These results suggest that a CXC and CC chemokine expression from epithelial cells infected with C. difficile may be an important factor in the mucosal inflammatory response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号